A new highly cytotoxic protein, toxophallin, was recently isolated from the fruit body of the death cap Amanita phalloides mushroom [Stasyk et al. (2008) Studia Biologica 2, 21-32]. The physico-chemical, chemical and biological characteristics of toxophallin differ distinctly from those of another death cap toxic protein, namely phallolysin.
View Article and Find Full Text PDFSnail1 is a major factor for epithelial-mesenchymal transition (EMT), an important event in tumor metastasis and in other pathologies. Snail1 is tightly regulated at transcriptional and posttranscriptional levels. Control of Snail1 protein stability and nuclear export by GSK3beta phosphorylation is important for Snail1 functionality.
View Article and Find Full Text PDFSrc-family tyrosine kinases are regulatory proteins that play a pivotal role in the disorganization of cadherin-dependent cell-cell contacts. We previously showed that Src was associated with vascular endothelial (VE)-cadherin and that tyrosine phosphorylation level of VE-cadherin was dramatically increased in angiogenic tissues as compared to quiescent tissues. Here, we examined whether VE-cadherin was a direct substrate for Src in vascular endothelial growth factor (VEGF)-induced VE-cadherin phosphorylation, and we identified the target tyrosine sites.
View Article and Find Full Text PDFTransforming growth factor-beta (TGFbeta) signaling involves activation of a number of signaling pathways, several of which are controlled by phosphorylation events. Here, we describe a phosphoproteome profiling of MCF-7 human breast epithelial cells treated with TGFbeta1. We identified 32 proteins that change their phosphorylation upon treatment with TGFbeta1; 26 of these proteins are novel targets of TGFbeta1.
View Article and Find Full Text PDFVascular endothelial growth factor receptor-2 (VEGFR-2) activation by VEGF-A is essential in vasculogenesis and angiogenesis. We have generated a pan-phosphorylation site map of VEGFR-2 and identified one major tyrosine phosphorylation site in the kinase insert (Y951), in addition to two major sites in the C-terminal tail (Y1175 and Y1214). In developing vessels, phosphorylation of Y1175 and Y1214 was detected in all VEGFR-2-expressing endothelial cells, whereas phosphorylation of Y951 was identified in a subset of vessels.
View Article and Find Full Text PDFThe platelet-derived growth factor receptors (PDGFRs) are receptor tyrosine kinases implicated in multiple aspects of cell growth, differentiation, and survival. Recently, a gain of function mutation in the activation loop of the human PDGFRalpha has been found in patients with gastrointestinal stromal tumors. Here we show that a mutation in the corresponding codon in the activation loop of the murine PDGFRbeta, namely an exchange of asparagine for aspartic acid at amino acid position 849 (D849N), confers transforming characteristics to embryonic fibroblasts from mutant mice, generated by a knock-in strategy.
View Article and Find Full Text PDFHistones from the parasitic platyhelminthes, Echinococcus granulosus and Fasciola hepatica, were systematically characterized. Core histones H2A, H2B, H3 and H4, which were identified on the basis of amino acid sequencing and mass spectrometry data, showed conserved electrophoretic patterns. Histones H1, identified on the basis of physicochemical properties, amino acid composition and amino acid sequencing, showed divergence, both in their number and electrophoretic mobilities, between the two species and among other organisms.
View Article and Find Full Text PDFNeutrophil apoptosis occurs both in the bloodstream and in the tissue and is considered essential for the resolution of an inflammatory process. Here, we show that p38-mitogen-activated protein kinase (MAPK) associates to caspase-8 and caspase-3 during neutrophil apoptosis and that p38-MAPK activity, previously shown to be a survival signal in these primary cells, correlates with the levels of caspase-8 and caspase-3 phosphorylation. In in vitro experiments, immunoprecipitated active p38-MAPK phosphorylated and inhibited the activity of the active p20 subunits of caspase-8 and caspase-3.
View Article and Find Full Text PDFBinding of fibroblast growth factor (FGF) to the high affinity receptor-1 (FGFR-1) leads to activation of its endogenous tyrosine kinase activity. A number of substrates for the FGFR-1 kinase have been identified. Among those, FGF receptor-substrate-2 (FRS-2) was identified by virtue of its interaction with p13suc, a yeast protein involved in cell cycle regulation.
View Article and Find Full Text PDFhEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C-terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation.
View Article and Find Full Text PDFVascular endothelial growth factors (VEGFs) regulate the development and growth of the blood and lymphatic vascular systems. Of the three VEGF receptors (VEGFR), VEGFR-1 and -2 are expressed on blood vessels; VEGFR-2 is found also on lymphatic vessels. VEGFR-3 is expressed mainly on lymphatic vessels but it is also up-regulated in tumor angiogenesis.
View Article and Find Full Text PDFWe have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix.
View Article and Find Full Text PDFAll eukaryotes respond to DNA damage by modulation of diverse cellular processes to preserve genomic integrity and ensure survival. Here we identify mammalian Tousled like kinases (Tlks) as a novel target of the DNA damage checkpoint. During S-phase progression, when Tlks are maximally active, generation of DNA double-strand breaks (DSBs) leads to rapid and transient inhibition of Tlk activity.
View Article and Find Full Text PDFAntigen 5 (Ag5) is a dominant secreted component of the larval stage of Echinococcus granulosus, and is highly immunogenic in human infections. Although the diagnostic value of Ag5 has been thoroughly evaluated, there has been little progress in its molecular characterization and the understanding of its biological role. In the present study, the Ag5 gene was cloned by reverse transcription-PCR on the basis of the amino acid sequences of tryptic fragments.
View Article and Find Full Text PDFReversible phosphorylation plays important roles in G protein-coupled receptor signaling, desensitization, and endocytosis, yet the precise location and role of in vivo phosphorylation sites is unknown for most receptors. Using metabolic 32P labeling and phosphopeptide sequencing we provide a complete phosphorylation map of the human bradykinin B2 receptor in its native cellular environment. We identified three serine residues, Ser(339), Ser(346), and Ser(348), at the C-terminal tail as principal phosphorylation sites.
View Article and Find Full Text PDFJ Cell Biochem
October 2001
The three deepest eukaryote lineages in small subunit ribosomal RNA phylogenies are the amitochondriate Microsporidia, Metamonada, and Parabasalia. They are followed by either the Euglenozoa (e.g.
View Article and Find Full Text PDFLinoleate diol synthase is a homotetrameric ferric hemeprotein, which catalyzes dioxygenation of linoleic acid to (8R)-hydroperoxylinoleate and isomerization of the hydroperoxide to (7S,8S)-dihydroxylinoleate. Ferryl intermediates and a tyrosyl radical are formed in the reaction. Linoleate diol synthase was digested with endoproteinase Lys-C, and internal peptides were sequenced.
View Article and Find Full Text PDFActivation of the beta-receptor for platelet-derived growth factor (PDGF) by its ligand leads to autophosphorylation on a number of tyrosine residues. Here we show that Tyr763 in the kinase insert region is a novel autophosphorylation site, which after phosphorylation binds the protein tyrosine phosphatase SHP-2. SHP-2 has also previously been shown to bind to phosphorylated Tyr1009 in the PDGF beta-receptor.
View Article and Find Full Text PDFPlatelet-derived growth factor (PDGF) is a dimeric protein that exerts its effects through tyrosine kinase alpha- and beta-receptors. The extracellular part of each receptor is composed of five Ig-like domains. Recombinant forms of alpha-receptor domains 1-4 (alphaRD1-4), 1-3 (alphaRD1-3), and 1 and 2 (alphaRD1-2) were prepared after expression in Chinese hamster ovary cells and were used to study the assembly of soluble ligand-receptor complexes.
View Article and Find Full Text PDFReceptor tyrosine phosphorylation is crucial for signal transduction by creating high affinity binding sites for Src homology 2 domain-containing molecules. By expressing the intracellular domain of Flt-1/vascular endothelial growth factor receptor-1 in the baculosystem, we identified two major tyrosine phosphorylation sites at Tyr-1213 and Tyr-1242 and two minor tyrosine phosphorylation sites at Tyr-1327 and Tyr-1333 in this receptor. This pattern of phosphorylation of Flt-1 was also detected in vascular endothelial growth factor-stimulated cells expressing intact Flt-1.
View Article and Find Full Text PDFProthymosin alpha (PTA) stimulates in a dose-dependent manner the phosphorylation of a 105-kDa protein (p105) in cell extracts from different cell types. Protein sequencing and immunological analysis indicated that this protein is elongation factor 2 (EF-2). We propose that calcium/calmodulin-dependent protein kinase III is responsible for the PTA-dependent EF-2 phosphorylation based on the following lines of evidence: (a) Ca2+ is required for the effect; (b) calmodulin enhances the reaction, and calmodulin inhibitors block the phosphorylation; and (c) no phosphorylation is seen in cell extracts depleted of calmodulin-binding proteins.
View Article and Find Full Text PDFThe ribonucleotide reductases from three ancient eubacteria, the hyperthermophilic Thermotoga maritima (TM), the radioresistant Deinococcus radiodurans (DR), and the thermophilic photosynthetic Chloroflexus aurantiacus, were found to be coenzyme-B12 (class II) enzymes, similar to the earlier described reductases from the archaebacteria Thermoplasma acidophila and Pyrococcus furiosus. Reduction of CDP by the purified TM and DR enzymes requires adenosylcobalamin and DTT. dATP is a positive allosteric effector, but stimulation of the TM enzyme only occurs close to the temperature optimum of 80-90 degrees C.
View Article and Find Full Text PDFHormone-sensitive lipase (HSL) is the rate-limiting enzyme in lipolysis. Stimulation of rat adipocytes with isoproterenol results in phosphorylation of HSL and a 50-fold increase in the rate of lipolysis. In this study, we used site-directed mutagenesis and two-dimensional phosphopeptide mapping to show that phosphorylation sites other than the previously identified Ser-563 are phosphorylated in HSL in response to isoproterenol stimulation of 32P-labeled rat adipocytes.
View Article and Find Full Text PDFMembers of the Smad family of intracellular signal transducers are essential for transforming growth factor-beta (TGF-beta) to exert its multifunctional effects. After activation of TGF-beta receptors, Smad2 and Smad3 become phosphorylated and form heteromeric complexes with Smad4. Thereafter, these activated Smad complexes translocate to the nucleus, where they may direct transcriptional responses.
View Article and Find Full Text PDFWe have compared 70-kDa heat shock cognate protein (Hsc70) isolated from bovine brain with recombinant wild type protein and mutant E543K protein (previously studied as wild type in our laboratory). Wild type bovine and recombinant protein differ by posttranslational modification of lysine 561 but interact similarly with a short peptide (fluorescein-labeled FYQLALT) and with denatured staphylococcal nuclease-(Delta135-149). Mutation E543K results in 4.
View Article and Find Full Text PDF