Publications by authors named "Wernig A"

Muscle weakness in Charcot-Marie-Tooth Type 1A disease (CMT1A) caused by mutations in peripheral myelin protein 22 (PMP22) has been attributed to an axonopathy that results in denervation and muscle atrophy. The underlying pathophysiological mechanisms involved are not understood. We investigated motor performance, neuromuscular junctions (NMJs), physiological parameters, and muscle morphometry of PMP22 transgenic mice.

View Article and Find Full Text PDF

Antigen detection with indirect immunohistochemical methods is hampered by high background staining if the primary antibody is from the same species as the examined tissue. This high background can be eliminated in unfixed cryostat sections of mouse skeletal muscle by boiling sections in PBS, and several proteins including even the low abundant dystrophin protein can then be easily detected with murine monoclonal antibodies. However, not all antigens withstand the boiling procedure.

View Article and Find Full Text PDF

There is evidence that the complex process of sarcopenia in human aged skeletal muscle is linked to the modification of mechanisms controlling Ca(2+) homeostasis. To further clarify this issue, we assessed the changes in the kinetics of activation and inactivation of T- and L-type Ca(2+) currents in in vitro differentiated human myotubes, derived from satellite cells of healthy donors aged 2, 12, 76 and 86 years. The results showed an age-related decrease in the occurrence of T- and L-type currents.

View Article and Find Full Text PDF

AChRepsilon(-/-) mice lack epsilon-subunits of the acetylcholine receptor and thus fail to express adult-type receptors. The expression of fetal-type receptors throughout postnatal life alters postsynaptic signal transduction and causes a fast-to-slow fiber type transition, both in slow-twitch soleus muscle and in fast-twitch extensor digitorum longus muscle. In comparison to wild-type muscle, the proportion of type 1 slow fibers is significantly increased (6%), whereas the proportion of fast fibers is reduced (in soleus, type 2A by 12%, and in extensor digitorum longus, type 2B/2D by 10%).

View Article and Find Full Text PDF

Ageing in humans is accompanied by a reduction in the capacity of satellite cells to proliferate and the forming myoblasts to fuse. The processes of myoblast differentiation and fusion are associated with specific changes in the cells electrical properties. We wanted to elucidate the possible effects of ageing on these parameters and performed whole-cell patch-clamp recordings on human myoblasts obtained from biopsies of skeletal muscles from 2-, 48- and 76-year-old donors.

View Article and Find Full Text PDF

Human skeletal muscle stem cells from healthy donors aged 2-82 years (n = 13) and from three children suffering from Duchenne Muscular Dystrophy (DMD) were implanted into soleus muscles of immunoincompetent mice and were also expanded in vitro until senescence. Growth of implanted cells was quantified by structural features and by the amount of human DNA present in a muscle. Proliferative capacity in vitro and in vivo was inversely related to age of the donor.

View Article and Find Full Text PDF

The properties of skeletal muscles are modulated by neural and nonneural factors, and the neural factors can be modulated by activity-independent as well as activity-dependent mechanisms. Given that daily activation of fast muscles is considerably less than of slow muscles, we hypothesized that the myogenic properties of the rat soleus (a slow muscle) would be more dependent on activity-dependent than activity-independent factors. Muscle mass, MyoD, and myogenin mRNA and protein levels, and satellite cell proliferation and differentiation rates (bromodeoxyuridine incorporation) were examined at 3, 14, and 28 days after either spinal cord isolation (SI, neuromuscular connectivity intact with minimal activation) or denervation (no neural influence).

View Article and Find Full Text PDF

Bone-marrow-derived cells can contribute nuclei to skeletal muscle fibers. However, serial sectioning of muscle in mdx mice implanted with GFP-labeled bone marrow reveals that only 20% of the donor nuclei chronically incorporated in muscle fibers show dystrophin (or GFP) expression, which is still higher than the expected frequency of "revertant" fibers, but there is no overall increase above controls over time. Obviously, the vast majority of incorporated nuclei either never or only temporarily turn on myogenic genes; also, incorporated nuclei eventually loose the activation of the beta-actin::GFP transgene.

View Article and Find Full Text PDF

The proliferative capacity of organotypic muscle stem cells, the satellite cells, from nine healthy human donors aged between 2 and 78 years was investigated. There was a loss in proliferative capacity with age, but the oldest donors (76, 78 years) would still be able to replace their musculature several times. Depending on frequency of desmin-positive (i.

View Article and Find Full Text PDF

Tumor necrosis factor (TNF) contributes to insulin resistance by binding to the 55kDa TNF receptor (TNF-R55), resulting in serine phosphorylation of proteins such as insulin receptor (IR) substrate (IRS)-1, followed by reduced tyrosine phosphorylation of IRS-1 through the IR and, thereby, diminished IR signal transduction. Through independent receptor domains, TNF-R55 activates a neutral (N-SMase) and an acid sphingomyelinase (A-SMase), that both generate the sphingolipid ceramide. Multiple candidate kinases have been identified that serine-phosphorylate IRS-1 in response to TNF or ceramide.

View Article and Find Full Text PDF

The satellite cell, the organotypic muscle stem cell, is the key element in ontogenetic and load induced muscle fibre growth and repair. It is therefore possible that the satellite pool becomes exhausted with age, especially in mdx mice where dystrophin deficiency results in skeletal muscle degeneration. We compared structural criteria and satellite cell frequencies in soleus muscles of 26 mdx and 23 wild type mice aged between 26 and 720 days.

View Article and Find Full Text PDF

The ageing process causes a reduction in the regenerative potential of skeletal muscles eventually leading to diminished muscle strength. In this work we investigated if ageing affects the excitation-contraction coupling mechanism in human myotubes derived from human satellite cells, thereby contributing to the loss in muscle strength in the aged. To test this hypothesis, satellite cells from differently aged donors were differentiated in vitro and the maturation of the excitation-contraction mechanism was followed by the videoimaging technique monitoring the efficiency of such a mechanism in generating intracellular calcium transients.

View Article and Find Full Text PDF

The tetradecanoyl phorbol acetate-induced sequence 7 gene (tis7) is regulated during cell fate processes and functions as a transcriptional coregulator. Here, we describe the generation and analysis of mice lacking the tis7 gene. Surprisingly, TIS7 knockout mice show no gross histological abnormalities and are fertile.

View Article and Find Full Text PDF

To answer the question of whether the satellite cell pool in human muscle is reduced during aging, we detected satellite cells in 30- microm-thick transverse sections under the confocal microscope by binding of M-cadherin antibody. The basal lamina was detected with laminin. Nuclei were stained with bisbenzimide or propidium iodide.

View Article and Find Full Text PDF

Demonstration of the importance of the paired box transcription factor Pax7 for the murine myosatellite cell population, with persistent expression in mature skeletal muscle, prompted us to investigate the distribution of Pax7 protein in biopsy samples of normal and pathological human skeletal limb muscle. Immunostaining for M-cadherin, an adhesion molecule present at the interface between myofibre and satellite cell, and the characteristic position adjacent to the muscle fibre and beneath the fibre's basement membrane were used to identify satellite cells. Anti-Pax7 reactivity was found in the majority of satellite cells but a small population was Pax7 negative.

View Article and Find Full Text PDF