Publications by authors named "Werner Urland"

A theoretical model that allows to predict, for the first time, the luminescence properties of a new phosphor (BaSnSi O :Eu ) is presented. The predicted emission wavelength, 488 nm with a 64 nm bandwidth, was confirmed by subsequent experimental work. The method consists in a multi-electron Hamiltonian parametrized from ab initio calculations.

View Article and Find Full Text PDF

The program BonnMag has been developed to calculate the absorption spectra and temperature dependent magnetic susceptibilities of f  systems. The computations of the transition energies are performed within the angular overlap model. Using Judd-Ofelt theory BonnMag allows estimation of the relative absorption coefficients of the electronic transitions with reasonable accuracy.

View Article and Find Full Text PDF

Emerald-green single crystals of U(PO4)Cl were grown by chemical vapor transport in a temperature gradient (1000 → 900 °C). The crystal structure of U(PO4)Cl (Cmcm, Z = 4, a = 5.2289(7) Å, b = 11.

View Article and Find Full Text PDF

Detailed experimental data on UPO4Cl comprising single-crystal UV/vis/NIR spectra and temperature-dependent magnetic susceptibilities form the basis for the investigation of the electronic structure of the U(4+) cation in UPO4Cl. For modeling of the observed physical properties the angular overlap model (AOM) was successfully employed. The computations were performed using the newly developed computer program BonnMag.

View Article and Find Full Text PDF

The Yb(2+)-doped perovskite derivatives CsMX3 (M = Ca and Sr; X = Cl, Br, and I) are ideal systems for obtaining a detailed insight into the structure-luminescence relationship of divalent lanthanides. The investigation of the respective photoluminescence properties yielded two emission bands in the violet and blue spectral range for all compounds, which are assigned to the spin-allowed and spin-forbidden 5d-4f transitions, respectively. The impact on their energetic positions is dependent on both the covalency of the Yb(2+)-halide bond and the corresponding bond length in agreement with expectations.

View Article and Find Full Text PDF

Here we report a theoretical analysis of the luminescence properties of Sr2Si5N8 host lattices codoped with Ca(2+) and Eu(2+). These systems have been first synthesized by Li et al. [J.

View Article and Find Full Text PDF

The most efficient way to provide domestic lighting nowadays is by light-emitting diodes (LEDs) technology combined with phosphors shifting the blue and UV emission toward a desirable sunlight spectrum. A route in the quest for warm-white light goes toward the discovery and tuning of the lanthanide-based phosphors, a difficult task, in experimental and technical respects. A proper theoretical approach, which is also complicated at the conceptual level and in computing efforts, is however a profitable complement, offering valuable structure-property rationale as a guideline in the search of the best materials.

View Article and Find Full Text PDF

The flux growth of uranium(IV) oxides presents several challenges, and to the best of our knowledge, only one example has ever been reported. We succeeded in growing two new reduced uranium silicates A2USi6O15 (A = K, Rb) under flux growth conditions in sealed copper tubes. The compounds crystallize in a new structure type with space group C2/c and lattice parameters a = 24.

View Article and Find Full Text PDF

We present a theoretical work detailing the electronic structure and the optical properties of (PrF8)(5-) embedded in LiYF4, complementing the insight with data that are not available by experimental line. The local distortions due to the embedding of the lanthanide ion in the sites occupied in the periodic lattice by smaller yttrium centres, not detectable in regular X-ray analyses, are reproduced with the help of geometry optimization. Then, based on the local coordination environment, the relation structure-optical properties is constructed by Density Functional Theory computations in conjunction with the ligand field theory analyses (LFDFT) determining the [Xe]4f(2)→ [Xe]4f(1)5d(1) transitions.

View Article and Find Full Text PDF

We deal with the computational determination of the electronic structure and properties of lanthanide ions in complexes and extended structures having open-shell f and d configurations. Particularly, we present conceptual and methodological issues based on Density Functional Theory (DFT) enabling the reliable calculation and description of the f → d transitions in lanthanide doped phosphors. We consider here the optical properties of the Pr(3+) ion embedded into various solid state fluoride host lattices, for the prospection and understanding of the so-called quantum cutting process, being important in the further quest of warm-white light source in light emitting diodes (LED).

View Article and Find Full Text PDF

We discuss the applicability of the Angular Overlap Model (AOM) to evaluate the electronic structure of lanthanide compounds, which are currently the subject of incredible interest in the field of luminescent materials. The functioning of phosphors is well established by the f-d transitions, which requires the investigation of both the ground 4f(n) and excited 4f(n-1)5d(1) electron configurations of the lanthanides. The computational approach to the problem is based on the effective Hamiltonian adjusted from ligand field theory, but not restricted to it.

View Article and Find Full Text PDF

Considering the DySc2N@C80 system as a prototype for Single Ion Magnets (SIMs) based on endohedral fullerenes, we present methodological advances and state-of-the art computations analysing the electronic structure and its relationship with the magnetic properties due to the Dy(III) ion. The results of the quantum chemical calculations are quantitatively decrypted in the framework of ligand field (LF) theory, extracting the full parametric sets and interpreting in heuristic key the outcome. An important result is the characterization of the magnetic anisotropy in the ground and excited states, drawing the polar maps of the state-specific magnetization functions that offer a clear visual image of the easy axes and account for the pattern of response to perturbations by the magnetic field applied from different space directions.

View Article and Find Full Text PDF

Herein we present a Ligand Field Density Functional Theory (LFDFT) based methodology for the analysis of the 4f(n)→ 4f(n-1)5d(1) transitions in rare earth compounds and apply it for the characterization of the 4f(2)→ 4f(1)5d(1) transitions in the quantum cutter Cs2KYF6:Pr(3+) with the elpasolite structure type. The methodological advances are relevant for the analysis and prospection of materials acting as phosphors in light-emitting diodes. The positions of the zero-phonon energy corresponding to the states of the electron configurations 4f(2) and 4f(1)5d(1) are calculated, where the praseodymium ion may occupy either the Cs(+)-, K(+)- or the Y(3+)-site, and are compared with available experimental data.

View Article and Find Full Text PDF

The novel gadolinium(III) containing compounds (CH3NH3)2[Gd2(CCl3COO)6(H2O)6](CCl3COO)2.2CCl3COOH (1) and (NH3CH3)2[Gd4(OH)4(CCl3COO)10(H2O)6].2H2O (2) were synthesized and structurally characterized by X-ray crystallography.

View Article and Find Full Text PDF