Publications by authors named "Werner Schroth"

Alterations in the function of K channels such as the voltage- and Ca-activated K channel of large conductance (BK) reportedly promote breast cancer (BC) development and progression. Underlying molecular mechanisms remain, however, elusive. Here, we provide electrophysiological evidence for a BK splice variant localized to the inner mitochondrial membrane of murine and human BC cells (mitoBK).

View Article and Find Full Text PDF
Article Synopsis
  • Endocrine therapy blocking estrogen is a key treatment for ER-positive breast cancer, but many patients develop resistance to drugs like tamoxifen (Tam).
  • Research shows that the nuclear protein IKKα, when activated by cytokines, helps cancer cells become resistant to Tam by increasing FAT10 expression.
  • Targeting the IKKα-FAT10 pathway may provide a new approach to overcome Tam resistance in breast cancer treatment.
View Article and Find Full Text PDF

Tamoxifen is widely used in patients with hormone receptor-positive breast cancer. The polymorphic enzyme CYP2D6 is primarily responsible for metabolic activation of tamoxifen, resulting in substantial interindividual variability of plasma concentrations of its most important metabolite, Z-endoxifen. The Z-endoxifen concentration thresholds below which tamoxifen treatment is less efficacious have been proposed but not validated, and prospective trials of individualized tamoxifen treatment to achieve Z-endoxifen concentration thresholds are considered infeasible.

View Article and Find Full Text PDF

The therapeutic efficacy of tamoxifen is predominantly mediated by its active metabolites 4-hydroxy-tamoxifen and endoxifen, whose formation is catalyzed by the polymorphic cytochrome P450 2D6 (CYP2D6). Yet, known CYP2D6 polymorphisms only partially determine metabolite concentrations in vivo. We performed the first cross-ancestry genome-wide association study with well-characterized patients of European, Middle-Eastern, and Asian descent (n = 497) to identify genetic factors impacting active and parent metabolite formation.

View Article and Find Full Text PDF

The Special Issue "Genome Research and Personalized Medicine in Breast Cancer" presents studies on personalized medicine in breast cancer, originally with a focus on genomic treatment prediction at all stages of disease [...

View Article and Find Full Text PDF
Article Synopsis
  • Tamoxifen metabolism is influenced by treatment adherence, co-medication, and molecular factors like the CYP2D6 genotype, impacting breast cancer prognosis.
  • A study of 149 Brazilian patients on tamoxifen found that low levels of the active metabolite (Z)-endoxifen at 3 months may correlate with shorter event-free survival (EFS).
  • However, results were inconsistent; while some analyses suggested an association, others did not, indicating a need for larger studies to explore the link between tamoxifen metabolism and breast cancer recurrence.
View Article and Find Full Text PDF

Purpose: Patients with estrogen receptor- and/or progesterone receptor-positive, early breast cancer benefit from hormonal treatment, yet high global death burdens due to high prevalence and long-term recurrence risk call for biomarkers to guide additional treatment approaches.

Experimental Design: From a prospective, observational study of postmenopausal early breast cancer patients treated with tamoxifen or aromatase inhibitors, gene expression analyses of 612 tumors was performed using the NanoString Breast Cancer 360 panel to interrogate 23 breast cancer pathways. Candidate signatures associated with disease subtype and event-free survival (EFS) were obtained by cluster analysis, Cox modeling, and conditional inference trees, and were independently tested in 613 patients from BreastMark.

View Article and Find Full Text PDF

Endoxifen is one of the most important metabolites of the prodrug tamoxifen. High interindividual variability in endoxifen steady-state concentrations (C ) is observed under tamoxifen standard dosing and patients with breast cancer who do not reach endoxifen concentrations above a proposed therapeutic threshold of 5.97 ng/mL may be at a 26% higher recurrence risk compared with patients with endoxifen concentrations exceeding this value.

View Article and Find Full Text PDF

Background And Purpose: Pore-forming α subunits of the voltage- and Ca -activated K channel with large conductance (BKα) promote malignant phenotypes of breast tumour cells. Auxiliary subunits such as the leucine-rich repeat containing 26 (LRRC26) protein, also termed BKγ1, may be required to permit activation of BK currents at a depolarized resting membrane potential that frequently occur in non-excitable tumour cells.

Experimental Approach: Anti-tumour effects of BKα loss were investigated in breast tumour-bearing MMTV-PyMT transgenic BKα knockout (KO) mice, primary MMTV-PyMT cell cultures, and in a syngeneic transplantation model of breast cancer derived from these cells.

View Article and Find Full Text PDF

Tamoxifen efficacy in breast cancer is suspected to depend on adherence and intact drug metabolism. We evaluated the role of adherence behavior and pharmacogenetics on the formation rate of (Z)-endoxifen. In 192 Brazilian patients, we assessed plasma levels of tamoxifen and its metabolites at 3, 6, and 12 months of treatment (liquid-chromatography tandem mass spectrometry), adherence behavior (Morisky, Green, and Levine medication adherence scale), and cytochrome P450 2D6 (CYP2D6) and other pharmacogene polymorphisms (matrix-assisted laser-desorption-ionization time of flight) mass spectrometry, real-time polymerase chain reaction).

View Article and Find Full Text PDF

Several tumor entities have been reported to overexpress K3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca signaling, K3.

View Article and Find Full Text PDF

Tamoxifen, a standard therapy for breast cancer, is metabolized to compounds with anti-estrogenic as well as estrogen-like action at the estrogen receptor. Little is known about the formation of estrogen-like metabolites and their biological impact. Thus, we characterized the estrogen-like metabolites tamoxifen bisphenol and metabolite E for their metabolic pathway and their influence on cytochrome P450 activity and ADME gene expression.

View Article and Find Full Text PDF

Prediction of impaired tamoxifen (TAM) to endoxifen metabolism may be relevant to improve breast cancer treatment, e.g., via TAM dose increase.

View Article and Find Full Text PDF

Introduction: Studies of triple-negative breast cancer have recently been extending the inclusion criteria and incorporating additional molecular markers into the selection criteria, opening up scope for targeted therapies. The screening phases required for studies of this type are often prolonged, since the process of determining the molecular subtype and carrying out additional biomarker assessment is time-consuming. Parameters such as germline genotypes capable of predicting the molecular subtype before it becomes available from pathology might be helpful for treatment planning and optimizing the timing and cost of screening phases.

View Article and Find Full Text PDF

Oncogenic signalling via Ca -activated K channels of intermediate conductance (SK4, also known as K 3.1 or IK) has been implicated in different cancer entities including breast cancer. Yet, the role of endogenous SK4 channels for tumorigenesis is unclear.

View Article and Find Full Text PDF

Tamoxifen (TAM) is an established endocrine treatment for all stages of oestrogen receptor (ER)-positive breast cancer. Its complex metabolism leads to the formation of multiple active and inactive metabolites. One of the main detoxification and elimination pathways of tamoxifen and its active metabolites, 4-hydroxytamoxifen (4-OHT) and endoxifen, is via glucuronidation catalysed by uridine 5'-diphospho-glucuronosyltransferases (UGTs).

View Article and Find Full Text PDF

Aim: The aim was to examine the influence of CYP2C19 variants and associated haplotypes on the disposition of tamoxifen and its metabolites, particularly norendoxifen (NorEND), in Asian patients with breast cancer.

Methods: Sixty-six CYP2C19 polymorphisms were identified in healthy Asians (n = 240), of which 14 were found to be tightly linked with CYP2C19*2, CYP2C19*3 and CYP2C19*17. These 17 SNPs were further genotyped in Asian breast cancer patients receiving tamoxifen (n = 201).

View Article and Find Full Text PDF

The presence or absence of estrogen and progesterone steroid hormone receptor expression (ER, PR) is an essential feature of invasive breast cancer and determines prognosis and endocrine treatment decisions. Among the four ER/PR receptor phenotypes, the ER-/PR+ is infrequent, and its clinical relevance has been controversially discussed. Thus, we investigated its clinical significance and gene expression pattern in large datasets.

View Article and Find Full Text PDF

Enzymatic conversion of most xenobiotic compounds is accomplished by hepatocytes in the liver, which are also an important target for the manifestation of the toxic effects of foreign compounds. Most cell lines derived from hepatocytes lack important toxifying or detoxifying enzymes or are defective in signaling pathways that regulate expression and activity of these enzymes. On the other hand, the use of primary human hepatocytes is complicated by scarce availability of cells and high interdonor variability.

View Article and Find Full Text PDF

Tamoxifen is a mainstay in the treatment of estrogen receptor-positive breast cancer and is metabolized to more than 30 different compounds. Little is known about in vivo concentrations of estrogenic metabolites E-metabolite E, Z-metabolite E, and bisphenol and their relevance for tamoxifen efficacy. Therefore, we developed a highly sensitive HPLC-ESI-MS/MS quantification method for tamoxifen metabolites bisphenol, E-metabolite E, and Z-metabolite E as well as for the sex steroid hormones estradiol, estrone, testosterone, androstenedione, and progesterone.

View Article and Find Full Text PDF

Introduction: Not all breast cancer patients respond to tamoxifen treatment, possibly due to genetic predisposition. As tamoxifen-induced reductions in percent mammographic density (PMD) have been linked to the risk and prognosis of breast cancer, we conducted a candidate gene study to investigate the association between germline CYP2D6 polymorphisms and PMD change.

Methods: Baseline and follow-up mammograms were retrieved for 278 tamoxifen-treated subjects with CYP2D6 metabolizer status (extensive (EM), heterozygous extensive/intermediate (hetEM/IM) or poor metabolizer (PM)).

View Article and Find Full Text PDF

Background: Adjuvant tamoxifen is a valid treatment option for women with oestrogen receptor (ER)-positive breast cancer. However, up to 40% of patients experience distant or local recurrence or die. MicroRNAs have been suggested to be important prognosticators in breast cancer.

View Article and Find Full Text PDF

Carbinol [4,4'-(hydroxymethylene)dibenzonitrile] is the main phase 1 metabolite of letrozole, a nonsteroidal aromatase inhibitor used for endocrine therapy in postmenopausal breast cancer. We elucidated the contribution of UDP-glucuronosyltransferase (UGT) isoforms on the glucuronidation of carbinol. Identification of UGT isoforms was performed using a panel of recombinant human UGT enzymes.

View Article and Find Full Text PDF