Publications by authors named "Werner Emberger"

Deletions and duplications of genomic DNA contribute to evolution, phenotypic diversity, and human disease. The underlying mechanisms are incompletely understood. We identified deletions of exon 10 of the SPAST gene in two unrelated families with hereditary spastic paraplegia.

View Article and Find Full Text PDF

Recently, a novel mechanism introducing genetic instability, termed aberrant somatic hypermutation (ASHM), has been described in diffuse large B-cell lymphoma. To further investigate whether ASHM also occurs in mucosa-associated lymphoid tissue type (MALT) lymphoma, we studied the mutation profile of PIM1, PAX5, RhoH/TTF, and c-MYC in 17 MALT lymphomas and 17 extranodal diffuse large B-cell lymphomas (DLBCLs) still exhibiting a low-grade MALT lymphoma component (transformed MALT lymphoma). Mutations in one or more genes were detected in 13 (76.

View Article and Find Full Text PDF

Mutations leading to activation of the RAF-mitogen-activated protein kinase/extracellular signal-regulated (ERK) kinase (MEK)-ERK pathway are key events in the pathogenesis of human malignancies. In a screen of 82 acute myeloid leukemia (AML) samples, 45 (55%) showed activated ERK and thus were further analyzed for mutations in B-RAF and C-RAF. Two C-RAF germ-line mutations, S427G and I448V, were identified in patients with therapy-related AML in the absence of alterations in RAS and FLT3.

View Article and Find Full Text PDF

The granulocyte colony-stimulating factor receptor (G-CSF-R) transmits signals for proliferation and differentiation of myeloid progenitor cells. Here we report on the identification of a rare single nucleotide polymorphism within its intracellular domain (G-CSF-R_Glu785Lys). Screening a cohort of 116 patients with primary myelodysplastic syndromes (MDS), de novo acute myeloid leukemia (AML) (84 patients), as well as 232 age- and sex-matched controls revealed a highly significant association of the G-CSF-R_785Lys allele with the development of high-risk MDS as defined by more than 5% bone marrow blasts (9.

View Article and Find Full Text PDF