Microbial necromass carbon (MNC) accounts for a large fraction of soil organic carbon (SOC) in terrestrial ecosystems. Yet our understanding of the fate of this large carbon pool under long-term warming is uncertain. Here, we show that 14 years of soil warming (+4°C) in a temperate forest resulted in a reduction in MNC by 11% (0-10 cm) and 33% (10-20 cm).
View Article and Find Full Text PDFClimate warming poses major threats to temperate forests, but the response of tree root metabolism has largely remained unclear. We examined the impact of long-term soil warming (>14 years, +4°C) on the fine root metabolome across three seasons for 2 years in an old spruce forest, using a liquid chromatography-mass spectrometry platform for primary metabolite analysis. A total of 44 primary metabolites were identified in roots (19 amino acids, 12 organic acids and 13 sugars).
View Article and Find Full Text PDFDeadwood provides habitat for fungi and serves diverse ecological functions in forests. We already have profound knowledge of fungal assembly processes, physiological and enzymatic activities, and resulting physico-chemical changes during deadwood decay. However, in situ detection and identification methods, fungal origins, and a mechanistic understanding of the main lignocellulolytic enzymes are lacking.
View Article and Find Full Text PDFMany moss species are associated with nitrogen (N)-fixing bacteria (diazotrophs) that support the N supply of mosses. Our knowledge relates primarily to pristine ecosystems with low atmospheric N input, but knowledge of biological N fixation (BNF) and diazotrophic communities in mosses in temperate forests with high N deposition is limited. We measured BNF rates using the direct stable isotope method and studied the total and potentially active diazotrophic communities in two abundant mosses, Brachythecium rutabulum and Hypnum cupressiforme, both growing on lying deadwood trunks in 25 temperate forest sites.
View Article and Find Full Text PDFCombinations of biocides are commonly added to building materials to prevent microbial growth and thereby cause degradation of the façades. These biocides reach the environment by leaching from façades posing an environmental risk. Although ecotoxicity to the aquatic habitat is well established, there is hardly any data on the ecotoxicological effects of biocides on the soil habitat.
View Article and Find Full Text PDFBiodiversity drives ecosystem processes, but its influence on deadwood decomposition is poorly understood. To test the effects of insect diversity on wood decomposition, we conducted a mesocosm experiment manipulating the species richness and functional diversity of beetles. We applied a novel approach using computed tomography scanning to quantify decomposition by insects and recorded fungal and bacterial communities.
View Article and Find Full Text PDFEnhanced nitrogen (N) deposition due to combustion of fossil fuels and agricultural fertilization is a global phenomenon which has severely altered carbon (C) and N cycling in temperate forest ecosystems in the northern hemisphere. Although deadwood holds a substantial amount of C in forest ecosystems and thus plays a crucial role in nutrient cycling, the effect of increased N deposition on microbial processes and communities, wood chemical traits and deadwood mass loss remains unclear. Here, we simulated high N deposition rates by adding reactive N in form of ammonium-nitrate (40 kg N ha yr) to deadwood of 13 temperate tree species over nine years in a field experiment in Germany.
View Article and Find Full Text PDFThe species-energy hypothesis predicts increasing biodiversity with increasing energy in ecosystems. Proxies for energy availability are often grouped into ambient energy (i.e.
View Article and Find Full Text PDFPhosphorus (P) is an essential and often limiting element that could play a crucial role in terrestrial ecosystem responses to climate warming. However, it has yet remained unclear how different P cycling processes are affected by warming. Here we investigate the response of soil P pools and P cycling processes in a mountain forest after 14 years of soil warming (+4 °C).
View Article and Find Full Text PDFIncreasing global temperatures have been reported to accelerate soil carbon (C) cycling, but also to promote nitrogen (N) and phosphorus (P) dynamics in terrestrial ecosystems. However, warming can differentially affect ecosystem C, N and P dynamics, potentially intensifying elemental imbalances between soil resources, plants and soil microorganisms. Here, we investigated the effect of long-term soil warming on microbial resource limitation, based on measurements of microbial growth ( O incorporation into DNA) and respiration after C, N and P amendments.
View Article and Find Full Text PDFFine root litter represents an important carbon input to soils, but the effect of global warming on fine root turnover (FRT) is hardly explored in forest ecosystems. Understanding tree fine roots' response to warming is crucial for predicting soil carbon dynamics and the functioning of forests as a sink for atmospheric carbon dioxide (CO). We studied fine root production (FRP) with ingrowth cores and used radiocarbon signatures of first-order, second- to third-order, and bulk fine roots to estimate fine root turnover times after 8 and 14 years of soil warming (+4 °C) in a temperate forest.
View Article and Find Full Text PDFClimate warming is predicted to affect temperate forests severely, but the response of fine roots, key to plant nutrition, water uptake, soil carbon, and nutrient cycling is unclear. Understanding how fine roots will respond to increasing temperature is a prerequisite for predicting the functioning of forests in a warmer climate. We studied the response of fine roots and their ectomycorrhizal (EcM) fungal and root-associated bacterial communities to soil warming by 4°C in a mixed spruce-beech forest in the Austrian Limestone Alps after 8 and 14 years of soil warming, respectively.
View Article and Find Full Text PDFPeat carbon accumulation is controlled by both large scale factors, such as climate and hydrological setting, and small scale factors, such as microtopography and plant community. These small scale factors commonly vary within peatlands and can cause variation in biogeochemical traits and carbon accumulation within the same site. To understand these within-site variations, we investigated long term carbon accumulation, peat decomposition, biogeochemistry of pore water and plant macrofossils along a transect in an ombrotrophic bog in southern Patagonia.
View Article and Find Full Text PDFThe tree root-mycorhizosphere plays a key role in resource uptake, but also in the adaptation of forests to changing environments. The adaptive foraging mechanisms of ectomycorrhizal (EcM) and fine roots of Picea abies, Pinus sylvestris and Betula pendula were evaluated along a gradient from temperate to subarctic boreal forest (38 sites between latitudes 48°N and 69°N) in Europe. Variables describing tree resource uptake structures and processes (absorptive fine root biomass and morphology, nitrogen (N) concentration in absorptive roots, extramatrical mycelium (EMM) biomass, community structure of root-associated EcM fungi, soil and rhizosphere bacteria) were used to analyse relationships between root system functional traits and climate, soil and stand characteristics.
View Article and Find Full Text PDFRising temperatures enhance microbial decomposition of soil organic matter (SOM) and thereby increase the soil CO efflux. Elevated decomposition rates might differently affect distinct SOM pools, depending on their stability and accessibility. Soil fractions derived from density fractionation have been suggested to represent SOM pools with different turnover times and stability against microbial decomposition.
View Article and Find Full Text PDFBiological N fixation (BNF) in the rhizosphere of Podocarpaceae is currently attributed to unspecific diazotrophs with negligible impact on N acquisition. Here, we report specific and high associative BNF in dead cells of root nodules of Lepidothamnus fonkii distributed in ombrotrophic peatlands of Patagonia. BNF of nodulated roots, intact plants of L.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2015
The desiccation of upper soil horizons is a common phenomenon, leading to a decrease in soil microbial activity and mineralization. Recent studies have shown that fungal communities and fungal-based food webs are less sensitive and better adapted to soil desiccation than bacterial-based food webs. One reason for a better fungal adaptation to soil desiccation may be hydraulic redistribution of water by mycelia networks.
View Article and Find Full Text PDFTemperate forests provide favorable conditions for carbonate bedrock weathering as the soil CO partial pressure is high and soil water is regularly available. As a result of weathering, abiotic CO can be released and contribute to the soil CO efflux. We used the distinct isotopic signature of the abiotic CO to estimate its contribution to the total soil CO efflux.
View Article and Find Full Text PDFThermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C.
View Article and Find Full Text PDFDrought reduces the carbon (C) assimilation of trees and decouples aboveground from belowground carbon fluxes, but little is known about the response of drought-stressed trees to rewetting. This study aims to assess dynamics and patterns of C allocation in beech saplings under dry and rewetted soil conditions. In October 2010, 5-year-old beech saplings from a forest site were transplanted into 20 l pots.
View Article and Find Full Text PDFWe simulated the effect of prolonged dry summer periods by lowering the water table on three manipulation plots (D(1-3)) in a minerotrophic fen in southeastern Germany in three years (2006-2008). The water table at this site was lowered by drainage and by excluding precipitation; three nonmanipulated control plots (C(1-3)) served as a reference. We found no significant differences in soil respiration (R(Soil)), gross primary production (GPP), or aboveground respiration (R(AG)) between the C(1-3) and D(1-3) plots in any of the measurement years.
View Article and Find Full Text PDFNorway spruce (Picea abies) forests exhibit lower annual atmospheric methane consumption rates than do European beech (Fagus sylvatica) forests. In the current study, pmoA (encoding a subunit of membrane-bound CH(4) monooxygenase) genes from three temperate forest ecosystems with both beech and spruce stands were analyzed to assess the potential effect of tree species on methanotrophic communities. A pmoA sequence difference of 7% at the derived protein level correlated with the species-level distance cutoff value of 3% based on the 16S rRNA gene.
View Article and Find Full Text PDF