Publications by authors named "Wera Collisi"

The 6,7-dihydroxycoumarin-5-carboxylates DHCou and 4-Me-DHCou have been synthesized five-step route including a propargyl-Claisen rearrangement as key step. The compounds show antibiofilm activity against and but lack the cytotoxic activity of parent 6,7-dihydroxycoumarines such as esculetin and 4-methylesculetin.

View Article and Find Full Text PDF

The synthesis of novel disorazole C1 analogues is described and their biological activity as cytotoxic compounds is reported. Based on our convergent entry to the disorazole core we present a flexible and robust strategy to construct a variety of interesting new analogues. In particular, two regions of the molecules were examined for structural modification: 1.

View Article and Find Full Text PDF

The concept of targeted drug conjugates has been successfully translated to clinical practice in oncology. Whereas the majority of cytotoxic effectors in drug conjugates are directed against either DNA or tubulin, our study aimed to validate nuclear export inhibition as a novel effector principle in drug conjugates. For this purpose, a semisynthetic route starting from the natural product ratjadone A, a potent nuclear export inhibitor, has been developed.

View Article and Find Full Text PDF

Streptomyces hygroscopicus is a natural producer of geldanamycin. Mutasynthetic supplementation of an AHBA-blocked mutant with all possible monofluoro 3-aminobenzoic acids provided new fluorogeldanamycins. These showed strong antiproliferative activity and inhibitory effects on human heat shock protein Hsp90.

View Article and Find Full Text PDF

A combination of mutasynthesis, precursor-directed biosynthesis and semisynthesis provides access to new ansamitocin derivatives including new nanostructured particle-drug conjugates. These conjugates are based on the toxin ansamitocin and superparamagnetic iron oxide-silica core shell particles. New ansamitocin derivatives that are functionalized either with alkynyl- or azido groups in the ester side chain at C-3 are attached to nanostructured iron oxide core-silica shell particles.

View Article and Find Full Text PDF

Supplementing a culture of a mutant strain of Actinosynnema pretiosum that is unable to biosynthesize aminohydroxy benzoic acid (AHBA), with 3-azido-5-hydroxy-benzoic acid and 3-azido-5-amino-benzoic acid, unexpectedly yielded anilino ansamitocins instead of the expected azido derivatives. This is the first example of the bioreduction of organic azides. The unique nature of these results was demonstrated when 3-azido-5-amino-benzoic acid was fed to the corresponding AHBA blocked mutant of Streptomyces hygroscopicus, the geldanamycin producer.

View Article and Find Full Text PDF

We describe the unprecedented formation of six ansamitocin derivatives that are deoxygenated at C-7 of the ansamitocin core, obtained during fermentation experiments by employing a variety of Actinosynnema pretiosum mutants and mutasynthetic approaches. We suggest that the formation of these derivatives is based on elimination at C-7/C-8 followed by reduction(s) of the intermediate enone. In bioactivity tests, only ansamitocin derivatives bearing an ester side chain at C-3 showed strong antiproliferative activity.

View Article and Find Full Text PDF

Heterologous expression of the large glucansucrase-type glycosyltransferases genes is still a challenge, and typically yields are poor. Therefore, a number of different Escherichia coli systems for the expression of such a gene, encoding the glycosyltransferase R (GtfR) from Streptococcus oralis, were constructed and evaluated. We thereby obtained a strain producing the highest molar yields described so far for this class of enzymes.

View Article and Find Full Text PDF

It is shown that exchanges of single invariant amino acids in two C-terminal catalytic domain segments of the glucosyltransferase R (GtfR) strongly affect its catalytic properties. Drastic decreases of activity through re- or displacements of Tyr965 demonstrate a crucial role of this residue. Similarly, exchanges of amino acids Asp1004, Val1006, and Tyr1011 profoundly influenced catalytic parameters.

View Article and Find Full Text PDF

Segments that may crucially influence the catalytic behaviour of glucosyltransferases of the glucansucrase type were selected for modification. This was done by sequence alignments, followed by structural modelling of the putative catalytic domain, based on a permuted form of the glucosyltransferase R (GtfR) of Streptococcus oralis. Five selected regions, located in the C-terminal half of the potential catalytic domain, were replaced by segments found at equivalent positions in other glucosyltransferases.

View Article and Find Full Text PDF