Vascular dysfunction resulting from endothelial hyperpermeability is a common and important feature of critical illness due to sepsis, trauma, and other conditions associated with acute systemic inflammation. Clarkson disease [monoclonal gammopathy-associated idiopathic systemic capillary leak syndrome (ISCLS)] is a rare, orphan disorder marked by spontaneous and recurrent episodes of hypotensive shock and peripheral edema due to widespread vascular leakage in peripheral tissues. Mortality from acute flares approaches 30% due to lack of effective therapies.
View Article and Find Full Text PDFTumor progression is intimately associated with the vasculature, as tumor proliferation induces angiogenesis and tumor cells metastasize to distant organs via blood vessels. However, whether tumor invasion is associated with blood vessels remains unknown. As glioblastoma (GBM) is featured by aggressive invasion and vascular abnormalities, we characterized the onset of vascular remodeling in the diffuse tumor infiltrating zone by establishing new spontaneous GBM models with robust invasion capacity.
View Article and Find Full Text PDFMonoclonal antibody (mAb) drugs are clinically important for the treatment of various diseases. TTAC-0001 is under development as a new anti-cancer antibody drug targeting VEGFR-2. As the less severe toxicity of TTAC-0001 compared to Bevacizumab, likely due to the decreased in vivo half-life, seems to be related to its structural flexibility, it is important to map the exact flexible regions.
View Article and Find Full Text PDFBackground: VEGF is a highly selective mitogen that serves as the central regulator of tumor angiogenesis by mediating endothelial proliferation, permeability, and survival. Tanibirumab (TTAC-0001) is a fully human IgG1 monoclonal antibody derived from a fully human naïve single-chain variable fragment (ScFv) phage library that was developed to inhibit the effects of VEGF in the treatment of solid tumors, especially those of the brain.
Methods: In the present study, we conducted intravenous pharmacokinetic studies of TTAC-0001 in mice, rats, and cynomolgus monkeys.
Background Tanibirumab is a fully human monoclonal antibody to vascular endothelial growth factor receptor 2 (VEGFR-2). We conducted a first-in-human phase I study of tanibirumab in patients with solid tumors refractory to standard chemotherapy. Primary endpoints were evaluating safety, pharmacokinetics (PKs), estimating maximum-tolerated dose (MTD) and recommended phase II dose (RP2D).
View Article and Find Full Text PDFVascular endothelial growth factor (VEGF) and its receptors are considered the primary cause of tumor-induced angiogenesis. Specifically, VEGFR-2/kinase insert domain receptor (KDR) is part of the major signaling pathway that plays a significant role in tumor angiogenesis, which is associated with the development of various types of tumor and metastasis. In particular, KDR is involved in tumor angiogenesis as well as cancer cell growth and survival.
View Article and Find Full Text PDFAngiogenesis is one of the most important processes for cancer cell survival, tumor growth and metastasis. Vascular endothelial growth factor (VEGF) and its receptor, particularly VEGF receptor-2 (VEGFR-2, or kinase insert domain-containing receptor, KDR), play critical roles in tumor-associated angiogenesis. We developed TTAC-0001, a human monoclonal antibody against VEGFR-2/KDR from a fully human naïve single-chain variable fragment phage library.
View Article and Find Full Text PDFCancer Biother Radiopharm
December 2011
Vascular endothelial growth factor receptor type 2 (VEGFR2)-targeted tumor treatment is an antiangiogenic therapeutic strategy. The human sodium iodide symporter (hNIS) gene is a useful reporter gene for tumor imaging and radiotherapy. In this study, we investigated the evaluation of therapeutic efficacy in hNIS gene-transfected tumor xenografts using a gamma imaging system after treatment with an anti-VEGFR2 antibody.
View Article and Find Full Text PDFHuman interleukin-2 (hIL-2) was produced as a recombinant fusion protein (G3.IL-2/HF) consisting of three tandem-arranged human glucagon molecules (G3) and hIL-2. For the recovery of hIL-2, a factor Xa (FXa) cleavage sequence was introduced next to the N-terminus of hIL-2.
View Article and Find Full Text PDFRadiotherapy is one of the major treatment modalities for lung cancer. Cell killing by ionizing radiation is mediated primarily through the reactive oxygen species (ROS) and ROS-driven oxidative stress. Prx1, a peroxiredoxin family member, was shown to be frequently elevated in lung cancer cells and tissues.
View Article and Find Full Text PDFMost proteases are synthesized as inactive precursors which are processed by proteolytic cleavage into a mature active form, allowing regulation of their proteolytic activity. The activation of the glutamic-acid-specific extracellular metalloprotease (Mpr) of Bacillus subtilis has been examined. Analysis of Mpr processing in defined protease-deficient mutants by activity assay and Western blotting revealed that the extracellular protease Bpr is required for Mpr processing.
View Article and Find Full Text PDFStreptomyces griseus trypsin (SGT) is a bacterial trypsin that lacks the conserved disulphide bond surrounding the autolysis loop. We investigated the molecular mechanism by which SGT is stabilized against autolysis. The autolysis loop connects to another surface loop via a salt bridge (Glu146-Arg222), and the Arg222 residue also forms a cation-pi interaction with Tyr217.
View Article and Find Full Text PDF