Publications by authors named "Wenzhuo Wu"

Polarons, quasiparticles from electron-phonon coupling, are crucial for material properties including high-temperature superconductivity and colossal magnetoresistance. However, scarce studies have investigated polaron formation in low-dimensional materials with phonon polarity and electronic structure transitions. In this work, we studied polarons of tellurene, composed of chiral Te chains.

View Article and Find Full Text PDF

Solid-state batteries (SSBs) present a potential pathway for advancing next-generation lithium batteries, characterized by exceptional energy density and enhanced safety performance. Solid-state electrolytes have been extensively researched, yet an affordable option with outstanding electrochemical performance is still lacking. In this work, LiNaTiO (LNTO)-based composite solid electrolytes (CSEs) were developed to enhance the interface stability and electronic insulation.

View Article and Find Full Text PDF

Room-temperature ferromagnetism in graphene has attracted considerable attention due to its potential application as spintronics. Theoretically, magnetic moment of graphene can be generated by removing a single p orbital from the π system, which introduces an unpaired electron into the graphene motif for magnetic coupling. In this work, p orbital of graphene is experimentally removed by cleaving the π bond of graphene using HBO with the assistance of supercritical CO (SC CO), which simultaneously introduces -B(OH) groups and unpaired electrons.

View Article and Find Full Text PDF

Superconducting-based electronic devices have shown great potential for future quantum computing applications. One key building block device is a superconducting field-effect transistor based on a superconductor-semiconductor-superconductor Josephson-junction (JJ) with a gate-tunable semiconducting channel. However, the performance of such devices is highly dependent on the quality of the superconductor to semiconductor interface.

View Article and Find Full Text PDF

Spintronic devices work by manipulating the spin of electrons other than charge transfer, which is of revolutionary significance and can largely reduce energy consumption in the future. Herein, ultrathin two-dimensional (2D) non-van der Waals (non-vdW) γ-GaO with room temperature ferromagnetism is successfully obtained by using supercritical CO (SC CO). The stress effect of SC CO under different pressures selectively modulates the orientation and strength of covalent bonds, leading to the change of atomic structure including lattice expansion, introduction of O vacancy, and transition of Ga-O coordination (GaO and GaO).

View Article and Find Full Text PDF

Tellurium (Te) is an elemental semiconductor with a simple chiral crystal structure. Te in a two-dimensional (2D) form synthesized by a solution-based method shows excellent electrical, optical, and thermal properties. In this work, the chirality of hydrothermally grown 2D Te is identified and analyzed by hot sulfuric acid etching and high-angle tilted high-resolution scanning transmission electron microscopy.

View Article and Find Full Text PDF

Premise: Characterizing the developmental processes in the transition from hermaphroditism to unisexuality is crucial for understanding floral evolution. Amaranthus palmeri, one of the most devastating weeds in the United States, is an emerging model system for studying a dioecious breeding system and understanding the biological traits of this invasive weed. The objectives of this study were to characterize phases of flower development in A.

View Article and Find Full Text PDF

Quantitative assessment of single cell fluxome is critical for understanding the metabolic heterogeneity in diseases. Unfortunately, laboratory-based single cell fluxomics is currently impractical, and the current computational tools for flux estimation are not designed for single cell-level prediction. Given the well-established link between transcriptomic and metabolomic profiles, leveraging single cell transcriptomics data to predict single cell fluxome is not only feasible but also an urgent task.

View Article and Find Full Text PDF

Chirality arises from the asymmetry of materials, where two counterparts are the mirror image of each other. The interaction between circular-polarized light and quantum materials is enhanced in chiral space groups due to the structural chirality. Tellurium (Te) possesses the simplest chiral crystal structure, with Te atoms covalently bonded into a spiral atomic chain (left- or right-handed) with a periodicity of 3.

View Article and Find Full Text PDF

Chemical sensors worn on the body could make possible the continuous, noninvasive, and accurate monitoring of vital human signals, which is necessary for remote health monitoring and telemedicine. Attractive for creating high-performance, wearable chemical sensors are atomically thin materials with intriguing physical features, abundant chemistry, and high surface-to-volume ratios. These advantages allow for appropriate material-analyte interactions, resulting in a high level of sensitivity even at trace analyte concentrations.

View Article and Find Full Text PDF
Article Synopsis
  • This study investigates new inhibitors for pancreatic lipase (PL) by using advanced techniques like affinity ultrafiltration, spectroscopy, and molecular docking.
  • Two potent inhibitors, cyanidin-3-O-glucoside (C3G) and catechin, were identified from black rice and adzuki bean coat extracts, with respective IC values of 0.268 mg/mL and 0.280 mg/mL.
  • The combination of C3G and catechin demonstrated a strong synergistic effect, lowering the IC value to 0.201 mg/mL and affecting PL’s secondary structures, suggesting their potential for developing obesity prevention supplements.
View Article and Find Full Text PDF

In this study, a high-performance triboelectric nanogenerator (TENG) is developed based on cold spray (CS) deposition of composite material layers. Composite layers were fabricated by cold spraying of micron-scale tin (Sn) particles on aluminum (Al) and polytetrafluoroethylene (PTFE) films, which led to improved TENG performance owing to functionalized composite layers as friction layers and electrodes, respectively. As-sprayed tin composite layers not only enhanced the flow of charges by strong adhesion to the target layer but also formed a nano-microstructure on the surface of the layers, thereby increasing the surface area during friction.

View Article and Find Full Text PDF

Objective: The main purpose of this study is to investigate the impact of green product and process innovation on the competitive advantages of the Chinese automobile industry during coronavirus disease 2019 (COVID-19). This study also examined the mediating role of corporate environmental ethics (CEE) and the moderating role of corporate environmental management in the relationship between the green product and process innovation on the competitive advantages of the Chinese automobile industry during COVID-19.

Methods: This study used a quantitative approach of research with the cross-sectional method for the collection of data.

View Article and Find Full Text PDF

Nanostructured piezoelectric semiconductors offer unprecedented opportunities for high-performance sensing in numerous catalytic processes of biomedical, pharmaceutical, and agricultural interests, leveraging piezocatalysis that enhances the catalytic efficiency with the strain-induced piezoelectric field. Here, a cost-efficient, high-performance piezo-electrocatalytic sensor for detecting l-ascorbic acid (AA), a critical chemical for many organisms, metabolic processes, and medical treatments, is designed and demonstrated. Zinc oxide (ZnO) nanorods and nanosheets are prepared to characterize and compare their efficacy for the piezo-electrocatalysis of AA.

View Article and Find Full Text PDF

Efficaciously scavenging waste mechanical energy from the environment is an emerging field in the self-powered and self-governing electronics systems which solves battery limitations. It demonstrates enormous potential in various fields such as wireless devices, vesture, and portable electronic devices. Different surface textured PET triboelectric nanogenerators (TENGs) were developed by the laser pattern method in the previous work, with the line textured TENG device showing improved performance due to a larger surface contact area.

View Article and Find Full Text PDF

Spatial manipulation of nanoparticles (NPs) in a controlled manner is critical for the fabrication of 3D hybrid materials with unique functions. However, traditional fabrication methods such as electron-beam lithography and stereolithography are usually costly and time-consuming, precluding their production on a large scale. Herein, for the first time the ultrafast laser direct writing is combined with external magnetic field (MF) to massively produce graphene-coated ultrafine cobalt nanoparticles supported on 3D porous carbon using metal-organic framework crystals as precursors (5 × 5 cm with 10 s).

View Article and Find Full Text PDF

Elemental two-dimensional (2D) materials have emerged as promising candidates for energy and catalysis applications due to their unique physical, chemical, and electronic properties. These materials are advantageous in offering massive surface-to-volume ratios, favorable transport properties, intriguing physicochemical properties, and confinement effects resulting from the 2D ultrathin structure. In this review, we focus on the recent advances in emerging energy and catalysis applications based on beyond-graphene elemental 2D materials.

View Article and Find Full Text PDF

Tellurium (Te) is a narrow bandgap semiconductor with a unique chiral crystal structure. The topological nature of electrons in the Te conduction band can be studied by realizing n-type doping using atomic layer deposition (ALD) technique on two-dimensional (2D) Te film. In this work, we fabricated and measured the double-gated n-type Te Hall-bar devices, which can operate as two separate or coupled electron layers controlled by the top gate and back gate.

View Article and Find Full Text PDF

Developing suitable supports to maximize the atomic utilization efficiency of platinum group metals is of great significance to hydrogen evolution from water splitting. Herein, we report a fully exposed Pt cluster supported on an S-vacancy rich MoS2-x support (Pt/Sv-MoS2-x) by a facile impregnation method. Pt/Sv-MoS2-x exhibits an outstanding electrochemical HER performance with a low overpotential of 26.

View Article and Find Full Text PDF

The low-dimensional, highly anisotropic geometries, and superior mechanical properties of one-dimensional (1D) nanomaterials allow the exquisite strain engineering with a broad tunability inaccessible to bulk or thin-film materials. Such capability enables unprecedented possibilities for probing intriguing physics and materials science in the 1D limit. Among the techniques for introducing controlled strains in 1D materials, nanoimprinting with embossed substrates attracts increased attention due to its capability to parallelly form nanomaterials into wrinkled structures with controlled periodicities, amplitudes, orientations at large scale with nanoscale resolutions.

View Article and Find Full Text PDF

Cost-effective and durable electrocatalysts for the alkaline hydrogen evolution reaction (HER) are urgently required. The slow HER kinetics suppressed by water dissociation hinder the application of catalysts in alkaline media. Herein, we constructed an amorphous heterostructure that combined amorphous-MoO (A-MoO) and MoS by in situ oxidizing amorphization of S-vacancy MoS.

View Article and Find Full Text PDF

Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-split H and H and the degenerate H valence bands (VB) and the lowest degenerate H conduction band (CB) as well as a higher energy transition at the L-point.

View Article and Find Full Text PDF

Dirac and Weyl nodal materials can host low-energy relativistic quasiparticles. Under strong magnetic fields, the topological properties of Dirac/Weyl materials can directly be observed through quantum Hall states. However, most Dirac/Weyl nodes generically exist in semimetals without exploitable band gaps due to their accidental band-crossing origin.

View Article and Find Full Text PDF

The capability of sensor systems to efficiently scavenge their operational power from stray, weak environmental energies through sustainable pathways could enable viable schemes for self-powered health diagnostics and therapeutics. Triboelectric nanogenerators (TENG) can effectively transform the otherwise wasted environmental, mechanical energy into electrical power. Recent advances in TENGs have resulted in a significant boost in output performance.

View Article and Find Full Text PDF

Atomically thin materials, leveraging their low-dimensional geometries and superior mechanical properties, are amenable to exquisite strain manipulation with a broad tunability inaccessible to bulk or thin-film materials. Such capability offers unexplored possibilities for probing intriguing physics and materials science in the 2D limit as well as enabling unprecedented device applications. Here, the strain-engineered anisotropic optical and electrical properties in solution-grown, sub-millimeter-size 2D Te are systematically investigated through designing and introducing a controlled buckled geometry in its intriguing chiral-chain lattice.

View Article and Find Full Text PDF