Single-cell manipulation is the key foundation of life exploration at individual cell resolution. Constructing easy-to-use, high-throughput, and biomimetic manipulative tools for efficient single-cell operation is quite necessary. In this study, a facile and efficient encapsulation of single cells relying on the massive and controllable production of droplets and collagen-alginate microgels using a microfluidic device is presented.
View Article and Find Full Text PDFThe establishment and application of biomimetic preclinical tumor models for generalizable and high-throughput antitumor screening play a promising role in drug discovery and cancer therapeutics. Herein, a facile and robust microengineering-assisted methodology for highly biomimetic three-dimensional (3D) tumor construction for dynamic and large-scale antitumor investigation is developed using micropatterned array chips. The high fidelity, simplicity, and stability of chip fabrication are guaranteed by improved polydimethylsiloxane (PDMS) microcontact printing.
View Article and Find Full Text PDFThe establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing.
View Article and Find Full Text PDFSingle-cell manipulation and analysis is critical to the study of many fundamental biological processes and uncovering cellular heterogeneity, and presents the potential for extremely valuable applications in biomedical fields, including neuroscience, regenerative therapy, early diagnosis, and drug screening. The use of microfluidic technologies in single-cell manipulation and analysis is one of the most promising approaches and enables the creation of innovative conditions that are impractical or impossible to achieve using conventional methods. Herein, an overview of the technological development of single-cell droplet microfluidics is presented.
View Article and Find Full Text PDFMicroengineering technology involving microfabrication, micropatterning and microfluidics enables promising advances in single cell manipulation and analysis. Herein, we describe a parallel, large-scale, and temporal investigation of diverse single cell activities and response dynamics using a facile-assembled microwell array chip with a microfluidics-molded microporous membrane. We demonstrated that the versatility with respect to geometrical homogeneity and diversity of microporous membrane fabrication, as well as the stability, repeatability, and reproducibility rely on the well-improved molding.
View Article and Find Full Text PDFReference interval study and clinical evaluation are crucial supportive researches to demonstrate the intended use of quantitative diagnostic reagents. The process of determining reference interval, as well as the problems found frequently in clinical evaluation, are discussed here, and the links between them are analyzed from the aspects of product's traceability, intended use and group design. Further, some suggestions are offered in this paper.
View Article and Find Full Text PDFZhongguo Yi Liao Qi Xie Za Zhi
April 2021
In this paper, some significant problems, which were found frequently in the products of autoimmune diagnostic reagents, were summarized and analyzed in detail, and meanwhile a few relevant suggestions were put forward, which should be paid attention in the process of registration and application.
View Article and Find Full Text PDFPorous membrane materials at the micro/nanoscale have exhibited practical and potential value for extensive biological and medical applications associated with filtration and isolation, cell separation and sorting, micro-arrangement, in-vitro tissue reconstruction, high-throughput manipulation and analysis, and real-time sensing. Herein, an overview of technological development of micro/nanoporous membranes (M/N-PMs) is provided. Various membrane types and the progress documented in membrane fabrication techniques, including the electrochemical-etching, laser-based technology, microcontact printing, electron beam lithography, imprinting, capillary force lithography, spin coating, and microfluidic molding are described.
View Article and Find Full Text PDFNeuronal cell microengineering involving micropatterning and polydimethylsiloxane (PDMS) microfluidics enables promising advances in microscale neuron control. However, a facile methodology for the precise and effective manipulation of neurons on a cell-repellent PDMS substrate remains challenging. Herein, a simple and straightforward strategy for neuronal cell patterning and neuronal network construction on PDMS based on microfluidics-assisted modification of functionalized Pluronic is described.
View Article and Find Full Text PDF