Publications by authors named "Wenzheng Ma"

The diagnosis and analysis of major depressive disorder (MDD) faces some intractable challenges such as dataset limitations and clinical variability. Resting-state functional magnetic resonance imaging (Rs-fMRI) can reflect the fluctuation data of brain activity in a resting state, which can find the interrelationships, functional connections, and network characteristics among brain regions of the patients. In this paper, a brain functional connectivity matrix is constructed using Pearson correlation based on the characteristics of multi-site Rs-fMRI data and brain atlas, and an adaptive propagation operator graph convolutional network (APO-GCN) model is designed.

View Article and Find Full Text PDF

The quantitative detection of HO is of great significance for preventing the occurrence of diseases. In this work, an electrochemical biosensor for detecting HO was constructed through a step-by-step modification method. The PDEA-HRP/MXene/PG biosensor (PDEA = poly(N,N-dimethyl acrylamide), HRP = horseradish peroxidase, PG = pyrolytic graphite) was prepared with two-dimensional metal carbide (MXene) nano materials as the inner layer and PDEA-HRP hydrogel as the outer layer for the detection of HO.

View Article and Find Full Text PDF

Oxidative stress and aging lead to progressive senescence of nucleus pulposus (NP) cells, resulting in intervertebral disc (IVD) degeneration (IVDD). In some cases, degenerative IVD can further cause low back pain (LBP). Several studies have confirmed that delaying and rejuvenating the senescence of NP cells can attenuate IVDD.

View Article and Find Full Text PDF

Chronic local inflammation and excessive cell apoptosis in nucleus pulposus (NP) tissue are the main causes of intervertebral disc degeneration (IDD). Stimuli-responsive hydrogels have great potential in the treatment of IDD by facilitating localized and controlled drug delivery. Herein, an injectable drug-loaded dual stimuli-responsive adhesive hydrogel for microenvironmental regulation of IDD, is developed.

View Article and Find Full Text PDF

Chronic local inflammation and resulting cellular dysfunction of nucleus pulposus (NP) cells are important pathogenic factors of intervertebral disc degeneration (IDD). Injectable pathological microenvironment-responsive hydrogels hold significant potential for treating IDD by adapting to dynamic microenvironment of IDD. Herein, we proposed an injectable gelatin-based hydrogel drug delivery system that could respond to the pathological microenvironment of IDD for controlled release of anti-inflammatory drug to promote degenerative NP repair.

View Article and Find Full Text PDF

Meniscus injuries are associated with the degeneration of cartilage and development of osteoarthritis (OA). It is challenging to protect articular cartilage and improve exercise when a meniscus injury occurs. Herein, inspired by the components and functions of the meniscus, we developed a self-lubricating and friction-responsive hydrogel that contains nanoliposomes loaded with diclofenac sodium (DS) and Kartogenin (KGN) for anti-inflammation and cartilage regeneration.

View Article and Find Full Text PDF

Aims: Osteoporosis is considered a common skeletal disease. Ortho-silicic acid has been found to enhance the osteogenic differentiation of osteoblasts. However, the molecular mechanism of osteogenesis induced by ortho-silicic acid is still undefined totally.

View Article and Find Full Text PDF

Numerous experiments in vitro and in vivo have shown that an appropriate increase intake of silicon can facilitate the synthesis of collagen and its stabilization and promote the differentiation and mineralization of osteoblasts. In this study, we examined whether ortho-silicic acid restrains the differentiation of osteoclast through the receptor activator of nuclear factor κB ligand (RANKL)/receptor activator of nuclear factor κB (RANK)/osteoprotegerin (OPG) signaling pathway by investigating its effect in vitro and in vivo. Bone marrow macrophage (BMM) cells were isolated and cultured with or without ortho-silicic acid, and then TRAP staining and immunofluorescence were performed to detect the differentiation of osteoclast.

View Article and Find Full Text PDF

The expression pattern of HOX transcript antisense RNA (HOTAIR) in the progression of gastric cancer and the regulation of its expression are still unclear. In the current study, HOTAIR expressions in gastric tissues collected from patients with superficial gastritis, atrophic gastritis, atypical hyperplasia, and gastric cancer as well as normal controls was quantitatively examined. The results showed that the expression of HOTAIR was higher in gastric cancer than in normal tissues, but reached the highest level in atrophic gastritis, suggesting that HOTAIR may be involved in the molecular process of nonresolving inflammation.

View Article and Find Full Text PDF

The pathogenesis of gastric cancer is not completely understood. Tumor necrosis factor-α-induced protein-8 like-2 (TIPE2) has recently been identified as a novel negative regulator gene of the immune system, and studies in mice and humans have suggested its inhibitory action in both inflammation and cancer. In this study, we examined the expression levels of TIPE2 in human gastric cancer tissues and also samples of paraneoplastic control tissue, and found that TIPE2 expression was reduced in gastric cancer.

View Article and Find Full Text PDF