Raman spectroscopy is widely used for material detection due to its specificity, but its application to spectral recognition often faces limitations due to insufficient training data, unlike fields such as image recognition. Traditional machine learning or basic neural networks are commonly used, but they have limited ability to achieve high precision. We have proposed a novel approach that combines the Triplet network (TN) and K-nearest neighbor (KNN) techniques to address this issue.
View Article and Find Full Text PDFBackground: In recent studies, accumulating evidence has revealed a strong association between the inflammatory response and the prognosis of many tumors. There is a certain correlation of neutrophil-to-lymphocyte ratio (NLR) with the prognosis in gastric cancer (GC) patients undergoing neoadjuvant chemotherapy (NAC). However, the existing research results have remained controversial.
View Article and Find Full Text PDFPurpose: The inflammatory parameters of peripheral blood are related to the prognosis of various cancers. The aim of this meta-analysis is to explore the prognostic value of preoperative OPNI in gastrointestinal stromal tumors (GIST).
Methods: The following search strategies were used to locate all literature published up to May 1, 2022: PubMed, Web of Science, CBM, EMBASE, and Cochrane, using the keywords "Prognosis," "survival," "Nutritional Assessment," "Nutrition Index," and "PNI," "OPNI," "Gastrointestinal stromal tumor," and "GIST.
The limited ability to fabricate nanostructures on nonplanar rugged surfaces has severely hampered the applicability of many emerging technologies. Here we report a resist stencil lithography based approach for in situ fabrication of multidimensional nanostructures on both planar and uneven substrates. By using the resist film as a flexible stencil to form a suspending membrane with predesigned patterns, a variety of nanostructures have been fabricated on curved or uneven substrates of diverse morphologies on demand.
View Article and Find Full Text PDFAbrupt phase shift introduced by plasmonic resonances has been frequently used to design subwavelength wave plates for optical integration. Here, with the sandwich structure consisting of a top periodic patterned silver nanopatch, an in-between insulator layer and a bottom thick Au film, we realize a broadband half-wave plate which is capable to cover entire visible light spectrum ranging from 400 to 780 nm. Moreover, when the top layer is replaced with a periodic array of composite super unit cell comprised of two nanopatches with different sizes, the operation bandwidth can be further improved to exceed an octave (400-830 nm).
View Article and Find Full Text PDFThe smooth surface of the metallic nanostructure is essential for the propagation of surface plasmon polaritons. In this paper, we present a novel method to fabricate the metallic nanopatterns with ultra-smooth surface on various substrates. By using a silica film as the sacrificial layer, we show that the prefabricated metallic nanopatterns produced by electron beam lithography and film deposition can be hydrolyzed and transferred onto a designated substrate.
View Article and Find Full Text PDFA native interfacial doping layer introduced in core-shell type ZnO nano-wires by a simple vapor phase re-growth procedure endows the produced nano-wires with both excellent electrical and optical performances compared to conventional homogeneous ZnO nanowires. The unique Zn-rich interfacial structure in the core-shell nanowires plays a crucial role in the outstanding performances.
View Article and Find Full Text PDFSurface plasmon modes originated from various metallic nanostructures possess unique features of strong nanoscale light confinement and enhancement with tunable energy, which make them attractive and promising for a variety of applications such as sensing, solar cell, and lasing. Here, we have investigated the interaction between localized and propagating surface plasmons in a structure consisting of a gold nanobar array and a thick gold film, separated by a silica dielectric spacer layer. It is found that the reflection spectrum of the designed plasmonic structure can be readily tailored by changing the gold nanobar size, array period and the spacer layer thickness.
View Article and Find Full Text PDFWe propose a novel thin solar cell design, integrating plasmonic component with optical layer, for conspicuous performance improvement in organic (P3HT: PCBM) thin film solar cell. Despite the relatively simple structure, the designed solar cell can get strikingly high spectral performance with the short circuit current density (J(sc)) enhancement up to 67%; and a nicely large J(sc) enhancement over 50% can be easily obtained spanning rather a broad geometric parametric range. The mechanisms responsible for this significant and broadband absorption enhancement as well as the effects of intercalating a plasmonic nanoparticles (NPs) array and an optical layer are theoretically and systematically investigated by finite-difference time-domain calculations (FDTD).
View Article and Find Full Text PDF