Publications by authors named "Wenzhe Yi"

Messenger RNA (mRNA) vaccine is revolutionizing the methodology of immunization in cancer. However, mRNA immunization is drastically limited by multistage biological barriers including poor lymphatic transport, rapid clearance, catalytic hydrolysis, insufficient cellular entry and endosome entrapment. Herein, we design a mRNA nanovaccine based on intelligent design to overcome these obstacles.

View Article and Find Full Text PDF

Cancer immunotherapy, a therapeutic approach that inhibits tumors by activating or strengthening anti-tumor immunity, is currently an important clinical strategy for cancer treatment; however, tumors can develop drug resistance to immune surveillance, resulting in poor response rates and low therapeutic efficacy. In addition, changes in genes and signaling pathways in tumor cells prevent susceptibility to immunotherapeutic agents. Furthermore, tumors create an immunosuppressive microenvironment immunosuppressive cells and secrete molecules that hinder immune cell and immune modulator infiltration or induce immune cell malfunction.

View Article and Find Full Text PDF

Bioorthogonal chemistry reactions occur in physiological conditions without interfering with normal physiological processes. Through metabolic engineering, bioorthogonal groups can be tagged onto cell membranes, which selectively attach to cargos with paired groups via bioorthogonal reactions. Due to its simplicity, high efficiency, and specificity, bioorthogonal chemistry has demonstrated great application potential in drug delivery.

View Article and Find Full Text PDF

Photodynamic therapy (PDT)-mediated cancer immunotherapy is attenuated due to the dysfunction of T cells in immunosuppressive tumor microenvironment (TME). Cholesterol metabolism plays a vital role in T cell signaling and effector. While the metabolic fitness of tumor infiltrating CD8 T cells is impaired by nutrition restriction in TME and accumulated metabolites by tumor cells.

View Article and Find Full Text PDF