Appl Microbiol Biotechnol
February 2023
Mitochondrial pyruvate carriers (MPCs), located in the inner membrane of mitochondria, are essential carriers for pyruvate to enter mitochondria. MPCs regulate a wide range of intracellular metabolic processes, such as glycolysis, the tricarboxylic acid cycle (TCA cycle), fatty acid metabolism, and amino acid metabolism. However, the metabolic regulation of MPCs in macrofungi is poorly studied.
View Article and Find Full Text PDFDrought is one of the most devasting and frequent abiotic stresses in agriculture. While many morphological, biochemical and physiological indicators are being used to quantify plant drought responses, stomatal control, and hence the transpiration and photosynthesis regulation through it, is of particular importance in marking the plant capacity of balancing stress response and yield. Due to the difficulties in simultaneous, large-scale measurement of stomatal traits such as sensitivity and speed of stomatal closure under progressive soil drought, forward genetic mapping of these important behaviors has long been unavailable.
View Article and Find Full Text PDFThe activity of mitochondrial pyruvate carrier (MPC) can be modulated to regulate intracellular metabolism under different culture conditions. In Ganoderma lucidum, the role of MPC in regulating carbon sources remains unknown. By knocking down MPC genes (MPC1 and MPC2), this research found that the loss of MPC increased the growth rate of G.
View Article and Find Full Text PDFThe AMP-activated protein kinase (AMPK)/Sucrose-nonfermenting serine-threonine protein kinase 1 (Snf1) plays an important role in metabolic remodelling in response to energy stress. However, the role of AMPK/Snf1 in responding to other environmental stresses and metabolic remodelling in microorganisms was unclear. Heat stress (HS), which is one important environmental factor, could induce the production of reactive oxygen species and the accumulation of ganoderic acids (GAs) in Ganoderma lucidum.
View Article and Find Full Text PDFThe transcription factor PacC/Rim101 participates in environmental pH adaptation, development and secondary metabolism in many fungi, but whether PacC/Rim101 contributes to fungal adaptation to environmental stress remains unclear. In our previous study, a homologous gene of PacC/Rim101 was identified, and PacC-silenced strains of the agaricomycete Ganoderma lucidum were constructed. In this study, we further investigated the functions of PacC in G.
View Article and Find Full Text PDFCellulose is a by-product of agricultural production and an abundant waste. As a carbon source, cellulose can be degraded and utilized by fungi. Carbon sources, which act as nutrients, not only provide energy but also serve as regulators of gene expression, metabolism and growth, through various signalling networks that enable cells to sense and adapt to varying environmental conditions.
View Article and Find Full Text PDF