Neuronal subtype is largely fixed in the adult mammalian brain. Here, however, we unexpectedly reveal that adult mouse striatal neurons can be reprogrammed into dopaminergic neuron-like cells (iDALs). This in vivo phenotypic reprogramming can be promoted by a stem cell factor (SOX2), three dopaminergic neuron-enriched transcription regulators (NURR1, LMX1A, and FOXA2), and a chemical compound (valproic acid).
View Article and Find Full Text PDFThe orphan nuclear receptor TLX is a master regulator of postnatal neural stem cell (NSC) self-renewal and neurogenesis; however, it remains unclear how TLX expression is precisely regulated in these tissue-specific stem cells. Here, we show that a highly conserved cis-element within the Tlx locus functions to drive gene expression in NSCs. We demonstrate that the transcription factors SOX2 and MYT1 specifically interact with this genomic element to directly regulate Tlx enhancer activity in vivo.
View Article and Find Full Text PDFGlial cells can be in vivo reprogrammed into functional neurons in the adult CNS; however, the process by which this reprogramming occurs is unclear. Here, we show that a distinct cellular sequence is involved in SOX2-driven in situ conversion of adult astrocytes to neurons. This includes ASCL1(+) neural progenitors and DCX(+) adult neuroblasts (iANBs) as intermediates.
View Article and Find Full Text PDFNeural stem cells (NSCs) are self-renewing multipotent progenitors that generate both neurons and glia. The precise control of NSC behavior is fundamental to the architecture and function of the central nervous system. We previously demonstrated that the orphan nuclear receptor TLX is required for postnatal NSC activation and neurogenesis in the neurogenic niche.
View Article and Find Full Text PDFSpinal cord injury (SCI) leads to irreversible neuronal loss and glial scar formation, which ultimately result in persistent neurological dysfunction. Cellular regeneration could be an ideal approach to replenish the lost cells and repair the damage. However, the adult spinal cord has limited ability to produce new neurons.
View Article and Find Full Text PDFAdult differentiated cells can be reprogrammed into pluripotent stem cells or lineage-restricted proliferating precursors in culture; however, this has not been demonstrated in vivo. Here, we show that the single transcription factor SOX2 is sufficient to reprogram resident astrocytes into proliferative neuroblasts in the adult mouse brain. These induced adult neuroblasts (iANBs) persist for months and can be generated even in aged brains.
View Article and Find Full Text PDFNeural stem cells (NSCs) continually generate functional neurons in the adult brain. Due to their ability to proliferate, deregulated NSCs or their progenitors have been proposed as the cells of origin for a number of primary central nervous system neoplasms, including infiltrating gliomas. The orphan nuclear receptor TLX is required for proliferation of adult NSCs, and its upregulation promotes brain tumor formation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2011
Kruppel-like factor 4 (KLF4) is involved in self-renewal of embryonic stem cells and reprogramming of somatic cells to pluripotency. However, its role in lineage-committed stem cells remains largely unknown. Here, we show that KLF4 is expressed in neural stem cells (NSCs) and is down-regulated during neuronal differentiation.
View Article and Find Full Text PDFNeural stem cells (NSCs) continually produce new neurons in postnatal brains. However, the majority of these cells stay in a nondividing, inactive state. The molecular mechanism that is required for these cells to enter proliferation still remains largely unknown.
View Article and Find Full Text PDFProgranulin (GRN) haploinsufficiency is a frequent cause of familial frontotemporal dementia, a currently untreatable progressive neurodegenerative disease. By chemical library screening, we identified suberoylanilide hydroxamic acid (SAHA), a Food and Drug Administration-approved histone deacetylase inhibitor, as an enhancer of GRN expression. SAHA dose-dependently increased GRN mRNA and protein levels in cultured cells and restored near-normal GRN expression in haploinsufficient cells from human subjects.
View Article and Find Full Text PDFN-methyl-D-aspartate glutamate receptor 1 (NMDAR1) plays a pivotal role in different forms of memory. Indeed, hippocampal CA1 region specific knockout (KO) of NMDAR1 in mice showed memory impairment. Recently, it has been reported that environmental enrichment enhanced memory and rescued the memory deficits of the NMDAR1-KO mice.
View Article and Find Full Text PDFA number of different ligands have been tested in the course of the development of protein array technology. The most extensively studied example of protein ligands has been based on antibody-antigen interaction. Other examples include protein-protein, protein-nucleic acid, and protein-small molecule interactions.
View Article and Find Full Text PDF