Objective: Stylomastoid foramen (SMF) puncture with radiofrequency ablation (RFA) is a minimally invasive therapy for hemifacial spasm (HFS) with notable therapeutic outcomes. Conventionally, this procedure is performed under CT guidance. The present study highlights the authors' preliminary clinical experience with robot-assisted SMF puncture in 7 patients with HFS using a neurosurgical robot.
View Article and Find Full Text PDFObjective: Radiofrequency thermocoagulation (RFTC) has emerged as an effective and safe treatment method for patients with refractory focal epilepsy, when stereo-electroencephalography (SEEG) is implanted. Although real-world research results are still limited, a considerable number of patients have shown favorable outcomes with this less invasive method. This study aims to describe the outcomes and predictive factors of SEEG-RFTC in real-world research.
View Article and Find Full Text PDFGuided bone regeneration gathers significant interest in the realm of bone tissue engineering; however, the interplay between membrane thickness and permeability continues to pose a challenge that can be addressed by the water-collecting mechanism of spider silk, where water droplets efficiently move from smooth filaments to rough conical nodules. Inspired by the natural design of spider silk, an innovative silk fibroin membrane is developed featuring directional fluid transportation via harmoniously integrating a smooth, dense layer with a rough, loose layer; conical microchannels are engineered in the smooth and compact layer. Consequently, double-layered membranes with cone-shaped microporous passageways (CSMP-DSF membrane) are designed for in situ bone repair.
View Article and Find Full Text PDFIntroduction: This purpose of this work is to give a detailed description of a surgical technique for frameless robot-assisted asleep deep brain stimulation (DBS) of the centromedian thalamic nucleus (CMT) in drug-resistant epilepsy (DRE).
Methods: Ten consecutively enrolled patients who underwent CMT-DBS were included in the study. The FreeSurfer "Thalamic Kernel Segmentation" module and experience target coordinates were used for locating the CMT, and quantitative susceptibility mapping (QSM) images were used to check the target.
Background: We aimed to evaluate the accuracy and safety of a novel self-tapping bone fiducial as a registration technique for stereoelectroencephalography (SEEG) implantation.
Methods: Each patient was installed with five bone fiducial markers. All procedures were performed using the same Sinovation robot system.
Objective: Percutaneous balloon compression (PBC) is a minimally invasive treatment for trigeminal neuralgia (TG) with a favorable cost-effectiveness ratio, but this technique has a steep learning curve. This study presents our initial clinical experience of robot-assisted PBC using a neurosurgical robot on six consecutive patients with TG.
Methods: We fixed the patient's head with a skull clamp and connected it with the linkage arms of a Sinovation neurosurgical robot, which was then registered using four bone fiducials by the robotic pointer.