Publications by authors named "Wenyun Lu"

Article Synopsis
  • Despite extensive research, much of the mammalian metabolome is still unexplored, with mass spectrometry detecting many small molecules but revealing few identified metabolites.
  • A novel approach using DeepMet, a chemical language model, has been developed to uncover previously unknown metabolites by learning the biosynthetic logic of known compounds.
  • By combining DeepMet with tandem mass spectrometry, the research enables automated discovery of a wide range of metabolites, demonstrating the potential of language models to enhance our understanding of the metabolome.
View Article and Find Full Text PDF

Dietary restriction of the sulfur-containing amino acids methionine and cysteine (SAAR) improves body composition, enhances insulin sensitivity, and extends lifespan; benefits seen also with endurance exercise. Yet, the impact of SAAR on skeletal muscle remains largely unexplored. Here we demonstrate that one week of SAAR in sedentary, young, male mice increases endurance exercise capacity.

View Article and Find Full Text PDF

The electrical conductivity of blood is a crucial physiological parameter with diverse applications in medical diagnostics. Here, a novel approach utilizing a portable millifluidic nanogenerator lab-on-a-chip device for measuring blood conductivity at low frequencies, is introduced. The proposed device employs blood as a conductive substance within its built-in triboelectric nanogenerator system.

View Article and Find Full Text PDF

Orbitrap mass spectrometry in full scan mode enables the simultaneous detection of hundreds of metabolites and their isotope-labeled forms. Yet, sensitivity remains limiting for many metabolites, including low-concentration species, poor ionizers, and low-fractional-abundance isotope-labeled forms in isotope-tracing studies. Here, we explore selected ion monitoring (SIM) as a means of sensitivity enhancement.

View Article and Find Full Text PDF

Neuroblastoma is a highly lethal childhood tumor derived from differentiation-arrested neural crest cells. Like all cancers, its growth is fueled by metabolites obtained from either circulation or local biosynthesis. Neuroblastomas depend on local polyamine biosynthesis, with the inhibitor difluoromethylornithine showing clinical activity.

View Article and Find Full Text PDF

Detection of small molecule metabolites (SMM), particularly those involved in energy metabolism using MALDI-mass spectrometry imaging (MSI), is challenging due to factors including ion suppression from other analytes present (e.g., proteins and lipids).

View Article and Find Full Text PDF

Creating multifunctional concrete materials with advanced functionalities and mechanical tunability is a critical step toward reimagining the traditional civil infrastructure systems. Here, the concept of nanogenerator-integrated mechanical metamaterial concrete is presented to design lightweight and mechanically tunable concrete systems with energy harvesting and sensing functionalities. The proposed metamaterial concrete systems are created via integrating the mechanical metamaterial and nano-energy-harvesting paradigms.

View Article and Find Full Text PDF

Tissues derive ATP from two pathways-glycolysis and the tricarboxylic acid (TCA) cycle coupled to the electron transport chain. Most energy in mammals is produced via TCA metabolism. In tumours, however, the absolute rates of these pathways remain unclear.

View Article and Find Full Text PDF

Sialylation, the addition of sialic acid to glycans, is a crucial post-translational modification of proteins, contributing to neurodevelopment, oncogenesis, and immune response. In cancer, sialylation is dramatically upregulated. Yet, the functional biochemical consequences of sialylation remain mysterious.

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) is an essential redox cofactor in mammals and microbes. Here we use isotope tracing to investigate the precursors supporting NAD synthesis in the gut microbiome of mice. We find that dietary NAD precursors are absorbed in the proximal part of the gastrointestinal tract and not available to microbes in the distal gut.

View Article and Find Full Text PDF

Metastasizing cancer cells are able to withstand high levels of oxidative stress through mechanisms that are poorly understood. Here, we show that under various oxidative stress conditions, pancreatic cancer cells markedly expand NADPH and NADP pools. This expansion is due to up-regulation of glucose-6-phosphate dehydrogenase (G6PD), which stimulates the cytoplasmic nicotinamide adenine dinucleotide kinase (NADK1) to produce NADP while converting NADP to NADPH.

View Article and Find Full Text PDF

Background: Sepsis is the leading cause of death in hospitalized children worldwide. Despite its hypothesized immune-mediated mechanism, targeted immunotherapy for sepsis is not available for clinical use.

Objective: To determine the association between longitudinal cytometric, proteomic, bioenergetic, and metabolomic markers of immunometabolic dysregulation and pathogen type in pediatric sepsis.

View Article and Find Full Text PDF

Background: Ketogenic diet is a potential means of augmenting cancer therapy. Here, we explore ketone body metabolism and its interplay with chemotherapy in pancreatic cancer.

Methods: Metabolism and therapeutic responses of murine pancreatic cancer were studied using KPC primary tumors and tumor chunk allografts.

View Article and Find Full Text PDF

Children's physical health is an important resource for a country's future construction. However, researchers found that the physical fitness of young children around the world has declined during the two decades, from 1992 to 2012. The decline in the physique of young children has caused widespread concern around the world.

View Article and Find Full Text PDF

Liquid chromatography-high-resolution mass spectrometry (LC-MS)-based metabolomics aims to identify and quantify all metabolites, but most LC-MS peaks remain unidentified. Here we present a global network optimization approach, NetID, to annotate untargeted LC-MS metabolomics data. The approach aims to generate, for all experimentally observed ion peaks, annotations that match the measured masses, retention times and (when available) tandem mass spectrometry fragmentation patterns.

View Article and Find Full Text PDF

NAD is an essential coenzyme for all living cells. NAD concentrations decline with age, but whether this reflects impaired production or accelerated consumption remains unclear. We employed isotope tracing and mass spectrometry to probe age-related changes in NAD metabolism across tissues.

View Article and Find Full Text PDF

Glycolysis plays a central role in organismal metabolism, but its quantitative inputs across mammalian tissues remain unclear. Here we use C-tracing in mice to quantify glycolytic intermediate sources: circulating glucose, intra-tissue glycogen, and circulating gluconeogenic precursors. Circulating glucose is the main source of circulating lactate, the primary end product of tissue glycolysis.

View Article and Find Full Text PDF

The emergence of cancer from diverse normal tissues has long been rationalized to represent a common set of fundamental processes. However, these processes are not fully defined. Here, we show that forced expression of glucose-6-phosphate dehydrogenase (G6PD) affords immortalized mouse and human cells anchorage-independent growth in vitro and tumorigenicity in animals.

View Article and Find Full Text PDF

The replication cycle and pathogenesis of the Plasmodium malarial parasite involves rapid expansion in red blood cells (RBCs), and variants of certain RBC-specific proteins protect against malaria in humans. In RBCs, bisphosphoglycerate mutase (BPGM) acts as a key allosteric regulator of hemoglobin/oxyhemoglobin. We demonstrate here that a loss-of-function mutation in the murine Bpgm (Bpgm) gene confers protection against both Plasmodium-induced cerebral malaria and blood-stage malaria.

View Article and Find Full Text PDF

In eukaryotes, conserved mechanisms ensure that cell growth is coordinated with nutrient availability. Overactive growth during nutrient limitation ("nutrient-growth dysregulation") can lead to rapid cell death. Here, we demonstrate that cells can adapt to nutrient-growth dysregulation by evolving major metabolic defects.

View Article and Find Full Text PDF

Mammalian organs are nourished by nutrients carried by the blood circulation. These nutrients originate from diet and internal stores, and can undergo various interconversions before their eventual use as tissue fuel. Here we develop isotope tracing, mass spectrometry, and mathematical analysis methods to determine the direct sources of circulating nutrients, their interconversion rates, and eventual tissue-specific contributions to TCA cycle metabolism.

View Article and Find Full Text PDF

Annotation of untargeted high-resolution full-scan LC-MS metabolomics data remains challenging due to individual metabolites generating multiple LC-MS peaks arising from isotopes, adducts, and fragments. Adduct annotation is a particular challenge, as the same mass difference between peaks can arise from adduct formation, fragmentation, or different biological species. To address this, here we describe a buffer modification workflow (BMW) in which the same sample is run by LC-MS in both liquid chromatography solvent with NH-acetate buffer and in solvent with the buffer modified with NH-formate.

View Article and Find Full Text PDF

Objective: Pharmacological agents targeting the mTOR complexes are used clinically as immunosuppressants and anticancer agents and can extend the lifespan of model organisms. An undesirable side effect of these drugs is hyperlipidemia. Although multiple roles have been described for mTOR complex 1 (mTORC1) in lipid metabolism, the etiology of hyperlipidemia remains incompletely understood.

View Article and Find Full Text PDF

Specific deletion of the tumor suppressor TRAF3 from B lymphocytes in mice leads to the prolonged survival of mature B cells and expanded B cell compartments in secondary lymphoid organs. In the current study, we investigated the metabolic basis of TRAF3-mediated regulation of B cell survival by employing metabolomic, lipidomic, and transcriptomic analyses. We compared the polar metabolites, lipids, and metabolic enzymes of resting splenic B cells purified from young adult B cell-specific and littermate control mice.

View Article and Find Full Text PDF

Untargeted metabolomics can detect more than 10 000 peaks in a single LC-MS run. The correspondence between these peaks and metabolites, however, remains unclear. Here, we introduce a Peak Annotation and Verification Engine (PAVE) for annotating untargeted microbial metabolomics data.

View Article and Find Full Text PDF