Chemoselective modification of specific residues within a given protein poses a significant challenge, as the microenvironment of amino acid residues in proteins is variable. Developing a universal molecular platform with tunable chemical warheads can provide powerful tools for precisely labeling specific amino acids in proteins. Cysteine and lysine are hot targets for chemoselective modification, but current cysteine/lysine-selective warheads face challenges due to cross-reactivity and unstable reaction products.
View Article and Find Full Text PDFAlong with an ever-deepening understanding of the catalytic principle of natural enzymes, the rational design of high-activity biomimetic nanozymes has become a hot topic in current research. Inspired by the active centers of natural enzymes consisting of catalytic sites and binding pockets, a Cu-doped CoS hollow nanocube (Cu/CoS HNCs) nanozyme integrating substitution defects and vacancies is developed through a defect engineering strategy. It is shown that the vacancies and substitution defects in the developed Cu/CoS HNC nanozymes serve as binding pockets and catalytic sites, respectively.
View Article and Find Full Text PDFLysine lactylation (Kla) is a novel histone post-translational modification discovered in late 2019. Later, HDAC1-3, were identified as the robust Kla erasers. While the Sirtuin family proteins showed weak eraser activities toward Kla, as reported.
View Article and Find Full Text PDFBackground: Red-tail catfish (Hemibagrus wyckioides) is an important commercially farmed catfish in southern China. Males of red-tail catfish grow faster than females, suggesting that all-male catfish will produce more significant economic benefits in aquaculture practice. However, little research has been reported on sex determination and gonadal development in red-tail catfish.
View Article and Find Full Text PDFCatfish (Siluriformes) are one of the most diverse vertebrate orders and are characterized by whisker-like barbels, which are important sensory organs in most of teleosts. However, their specific biological functions are still unclear. Red-tail catfish (Hemibagrus wyckioides) is well-known catfish species with four pairs of barbels, of which the maxillary barbels reach two-thirds of the body length.
View Article and Find Full Text PDFDynamically controlling the post-translational modification of the ε-amino groups of lysine residues is critical for regulating many cellular events. Increasing studies have revealed that many important diseases, including cancer and neurological disorders, are associated with the malfunction of lysine deacylases and demethylases. Developing fluorescent probes that are capable of detecting lysine deacylase and demethylase activity is highly useful for interrogating their roles in epigenetic regulation and diseases.
View Article and Find Full Text PDFCancer treatment currently still faces crucial challenges in therapeutic effectiveness, precision, and complexity. Photodynamic therapy (PDT) as a non-invasive tactic has earned widespread popularity for its excellent therapeutic output, flexibility, and restrained toxicity. Nonetheless, drawbacks, including low efficiency, poor cancer specificity, and limited therapeutic depth, remain considerable during the cancer treatment.
View Article and Find Full Text PDFThe Tuyuhun Kingdom (AD 313-663) was one of the most famous regimes in northwest China during the early medieval period. However, the lifestyle and spiritual pursuit of their descendants who became allied with the Tang Dynasty remain enigmatic. The excavation of the Chashancun cemetery, a Tuyuhun royal descendant (AD 691) cemetery in the Qilian Mountains in northwest China, reveals a large amount of uncharred plant remains.
View Article and Find Full Text PDFThe discovery of efficient photocatalysts is a promising key approach to solve the environmental crisis caused by hazardous organic dyes. Herein, we have for the first time created ZnO mesocrystals with a novel apple-like morphology. We have developed a one-pot biomineralization route to synthesize ZnO nanostructures at room temperature by using the rod-like protein collagen as the template.
View Article and Find Full Text PDFThe construction of potent peptide probes for selectively detecting denatured collagen is crucial for a variety of widespread diseases. However, all of the denatured collagen-targeting peptide probes found till date primarily utilized the repetitive (Gly-X-Y) sequences with exclusively imino acids Pro and Hyp in the X and Y positions, which stabilized the triple helical conformation of the peptide probes, resulting in severe obstacles for their clinical applications. A novel series of peptide probes have been constructed by incorporating nonimino acids at the X position of the (GPO)GXO(GPO) sequence, while the X-site residue is varied as Tyr, Phe, Asp, and Ala, respectively.
View Article and Find Full Text PDFCoastal harmful algal blooms (HABs) in China's seas have attracted researchers' attention for decades. Among the four seas of China, the HAB frequency is the highest in the East China Sea (ECS). The impact of climate change and anthropogenic dominant factors on HABs is not well quantified and the response of HABs to the changing climate is also not clear.
View Article and Find Full Text PDFThe development of robust collagen assays is crucial in the diagnosis and treatment of various pathological conditions. Peptide probes composed of the (Gly-Pro-Hyp) sequences have received extensive attention for their remarkable collagen-targeting capability, which unfortunately has been severely impaired by their high triple helical stability. Herein, we report an efficient strategy to reduce the triple helical propensity of the (Gly-Pro-Hyp) sequences by electrostatic repulsion.
View Article and Find Full Text PDFDenatured collagen is a key biomarker for various critical diseases such as cancer. Peptide probes with the repetitive (Gly-Pro-Hyp)n sequences have recently been found to selectively target denatured collagen; however, thermal or UV pretreatment is required to drive the peptides into the monomer conformation, which poses a substantial challenge for clinical applications. We herein construct two peptide probes, FAM-GOO and FAM-GPP, consisting of the repetitive (Gly-Hyp-Hyp)8 and (Gly-Pro-Pro)8 sequences, respectively.
View Article and Find Full Text PDF