Publications by authors named "Wenyu Ji"

Article Synopsis
  • Growth of ultrathick shells on quantum dots (QDs) enhances the properties of nanoparticles (NPs).
  • CuInSe quantum dots were created with a uniform surface, allowing for a superthick shell (∼45 nm) of CuInS to be added, resulting in large core/shell nanostructures (~100 nm).
  • This technique was further applied to create other core/shell configurations, indicating potential for new chemical and physical phenomena in nanomaterials, beneficial for research and commercial applications.
View Article and Find Full Text PDF

Distinguishing and understanding the nonradiative recombination of charges are crucial for optimizing quantum-dot light-emitting diodes (QLEDs). Auger recombination (AR), a well-known nonradiative process, is widely recognized to occur in QLEDs. However, it has not yet been directly observed in a real working QLED.

View Article and Find Full Text PDF

We conducted this study to investigate the radioprotective effects of recombinant human thrombopoietin (rhTPO) on beagle dogs irradiated with 3.0 Gy 60Co gamma rays. Fifteen healthy adult beagles were randomly assigned to a control group with alleviating care, and 5 and 10 μg/kg rhTPO treatment group.

View Article and Find Full Text PDF

Ultra-high-performance concrete (UHPC), a new cement-based material that offers high mechanical strength and good durability, has been widely applied in construction and rehabilitation projects in recent years. An optimum bending system is achieved by positioning the UHPC layer at the bottom tensile zone of the composite beam and placing the normal-strength concrete (NC) layer at the upper compression zone, which is described as the UHPC-NC composite beam. The fatigue behavior of reinforced UHPC-NC composite beams was described in this study, with an emphasis on the effects of UHPC layer thickness and fatigue load level on the fatigue life of the beam, deformation of the interface between UHPC and NC layers, as well as the bending stiffness of the beam.

View Article and Find Full Text PDF

In this study, the fundamental but previously overlooked factors of charge generation efficiency and light extraction efficiency (LEE) are explored and collaboratively optimized in tandem quantum-dot light-emitting diodes (QLEDs). By spontaneously forming a microstructured interface, a bulk-heterojunction-like charge-generation layer composed of a poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate)/ZnO bilayer is fabricated and an ideal charge-generation efficiency surpassing 115% is obtained. The coupling strength of the waveguide mode for the top unit and the plasmon polariton loss for the bottom unit are highly suppressed using precise thickness control, which increases the LEE of the tandem devices.

View Article and Find Full Text PDF

Quantum-dot light-emitting diodes (QLEDs) with memory capability can provide multifunctional integration properties in on-chip and intelligent electronic applications. Herein, memory properties are achieved by inserting a tungsten oxide (WO) film between the ZnO electron-transporting layer and cathode. Pentavalent tungsten ions (W) in this nonstoichiometric WO film can be oxidized to W by storing holes, inducing significant electrons in the adjacent ZnO layer.

View Article and Find Full Text PDF

At present, the treatment of expired medicines mainly involves burning, which means waste of resources and carbon dioxide emissions, and it does not comply with the concept of resource recycling. In this study, in order to explore the resource utilization pathways of expired medicines, progesterone drugs were evaluated as crude oil flow improvers as an example. The results shows that progesterone injection (PI) and progesterone capsule (PC) both act as viscosity reducer and pour point depressant in different crude oil, and 500 ppm PI and 300 ppm PC are the best dosage respectively.

View Article and Find Full Text PDF

The brain is often described as an "immune-privileged" organ due to the presence of the blood-brain-barrier (BBB), which limits the entry of immune cells. In general, intracranial injection of adeno-associated virus (AAV) is considered a relatively safe procedure. In this study, we discovered that AAV, a popular engineered viral vector for gene therapy, can disrupt the BBB and induce immune cell infiltration in a titer-dependent manner.

View Article and Find Full Text PDF

Background: Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation.

View Article and Find Full Text PDF

The charge-carrier dynamics is a fundamental question in quantum-dot light-emitting diodes (QLEDs), determining the electroluminescence (EL) properties of the devices. By means of a hole-confined QLED design, the distribution and storage/residing of the charge carriers in the devices are deciphered by the transient electroluminescence (TrEL) spectroscopic technology. It is demonstrated that the holes stored in the quantum dots (QDs) are responsible for the EL overshoot during the rising edge of the TrEL response.

View Article and Find Full Text PDF

Charge carriers are the basic physical element in an electrically driven quantum-dot light-emitting diode (QLED), which acts as a converter transforming electric energy to light energy. Therefore, it is widely sought after to manage the charge carriers for achieving efficient energy conversion; however, to date, there has been a lack of understanding and efficient strategies. Here, an efficient QLED is achieved by manipulating the charge distribution and dynamics with an n-type 1,3,5-tris(-phenylbenzimidazole-2-yl)benzene (TPBi) layer embedded into the hole-transport layer.

View Article and Find Full Text PDF

The operational stability is a current bottleneck facing the quantum dot light-emitting diodes (QLEDs). In particular, the device working around turn-on voltage suffers from unbalanced charge injection and heavy power loss. Here, we investigate the operational stability of red emissive CdSe QLEDs operated at different applied voltages.

View Article and Find Full Text PDF

Background: N6-methyladenosine (m6A) RNA regulators play important roles in cancers, but their functions and mechanism have not been demonstrated clearly in gastric cancer (GC).

Methods: In this study, the GC samples with clinical information and RNA transcriptome were downloaded from The Cancer Genome Atlas database. The different expression genes were compared by the absolute value and median ± standard deviation.

View Article and Find Full Text PDF

Objective: The safety and efficacy of three-dimensional- (3D-) printed hydroxyapatite/polylactic acid (HA-PLA) composites in repairing cranial defects were evaluated in a rabbit experimental model.

Methods: Twelve New Zealand rabbits were selected as experimental subjects. Two holes (A and B), each with a diameter of approximately 1 cm, were made in the cranium of each rabbit.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines the link between folate metabolism gene polymorphisms and neural tube defects (NTDs) in a Chinese population, comparing 495 affected children with 255 healthy controls.
  • Results showed that children with NTDs had lower levels of folic acid, SAM, and a decreased SAM/SAH ratio, while certain environmental factors and the MTHFR 677C > T gene increased NTD risk, whereas the MTHFR 1298A > C gene offered protection.
  • Overall, the research highlights the importance of metabolic markers and genetic factors in the incidence of NTDs, suggesting that both genetic predispositions and environmental influences contribute to the condition.
View Article and Find Full Text PDF

Background: VASH1 is a novel angiogenic regulatory factor, that participates in the process of carcinogenesis and the development of diverse tumors. Our study aimed to investigate the expression and prognostic value of the VASH1 in Lower-Grade Glioma (LGG), to explore its functional network in LGG and its effects on biological behaviors.

Methods: LGG transcriptome data, somatic mutation profiles and clinical features analyzed in the present study were obtained from the TCGA, GTEx, CCLE, CGGA, UALCAN, and GEPIA2 databases, as well as clinical data and tissue sections of 83 LGG patients in our hospital.

View Article and Find Full Text PDF

To date, measuring the carrier mobility in semiconductor films, especially for the amorphous organic small-molecule films, is still a big challenge. Here, we demonstrate that transient electroluminescence (TrEL) spectroscopy with quantum-dot light-emitting diodes as the platform is a feasible and reliable method to evaluate the carrier mobility of such amorphous films. The position of the exciton formation zone is precisely determined and controlled by employing a quantum dot monolayer as the emissive layer.

View Article and Find Full Text PDF

Metastasis is one of the important biological features of malignant tumors and one of the main factors responsible for poor prognosis. Although the widespread application of newer clinical technologies and their continuous development have significantly improved survival in patients with brain metastases, there is no uniform standard of care. More effective therapeutic measures are therefore needed to improve prognosis.

View Article and Find Full Text PDF

A reliable encapsulation technology with scalability and flexibility is urgently needed for electroluminescence devices. Here, we developed a simple, robust, low-cost, and scalable flexible lamination encapsulation strategy with quantum-dot light-emitting diodes (QLEDs) as the model devices. Multilayered Parafilm combining with calcium oxide buffer was used for the lamination encapsulation.

View Article and Find Full Text PDF

Sulfur dioxide is one of the main causes of air pollution such as acid rain and photochemical smog, and its pollution control and resource utilization have become important research directions. LaO was incorporated into CeO to enhance the surface basicity of La-Ce-O catalyst and increase the concentration of chemisorbed oxygen, thereby promoting the improvement of catalytic performance of SO reduction by CO. Results have showed that the incorporation of LaO would not only increase the concentration of chemisorbed oxygen and hydroxyl on the catalyst surface, but also increase the basicity of the catalyst, thereby facilitating the adsorption of SO on the catalyst surface.

View Article and Find Full Text PDF

Substantial progress has been made in perovskite light-emitting diodes (PeLEDs), but the fabrication of high-performance blue PeLEDs still remains a challenge due to its low efficiency, spectral instability and short operational lifetime. How to produce an efficient and stable blue PeLED is the key to realizing the application of PeLEDs in full-color displays. We herein report a blue PeLED usint the ligand-assisted reprecipitation method, in which phenylethylammonium bromide (PEABr) was used as ligands, and chloroform was used as anti-solvent to prepare blue perovskite nanocrystal films.

View Article and Find Full Text PDF

Objective: Research over the past decade has suggested important roles for pseudogenes in gliomas. Our previous study found that the RPL4P4 pseudogene is highly expressed in gliomas. However, its biological function in gliomas remains unclear.

View Article and Find Full Text PDF

N6-methyladenosine (m6A) RNA methylation is an important epigenetic modification affecting alternative splicing (AS) patterns of genes to regulate gene expression. AS drives protein diversity and its imbalance may be an important factor in tumorigenesis. However, the clinical significance of m6A RNA methylation regulator-related AS in the tumor microenvironment has not been investigated in low-grade glioma (LGG).

View Article and Find Full Text PDF

A high electrical field is necessary to achieve a high brightness for halide perovskite light-emitting diodes (PeLEDs). Charge accumulation in the perovskite film becomes more serious under a high electrical field owing to the imbalanced charge injection in PeLEDs. Concomitantly, the perovskite film will suffer from a higher electrical field increased by the accumulated-charge-induced local electrical field, dramatically accelerating the ion migration and degradation of PeLEDs.

View Article and Find Full Text PDF

A series of W-Zr-O /TiO catalysts with hierarchical pore structure were prepared and used for selective catalytic reduction of NO by NH. Results showed that the 5C-WZ/T had a hierarchical pore structure, and exhibited high catalytic activity and good resistance to water and sulfur poisoning. The activity of the 5C-WZ/T catalyst was close to 100% in the range of 350-500 °C.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: