Publications by authors named "Wenyi Jia"

Rho guanine nucleotide exchange factor 18 (ARHGEF18) is a member of the Rho guanine nucleotide exchange factor (RhoGEF) family. RhoGEF plays an important role in the occurrence of tumors and neurological diseases; however, its involvement in host cell resistance against pathogenic microorganisms is mostly unknown. Herein, we report that bovine viral diarrhea virus (BVDV) nonstructural protein 5B (NS5B) can activate the nuclear factor kappa B (NF-κB) signaling pathway to induce an immune response.

View Article and Find Full Text PDF

Bisphenols are frequently found in the environment and have been of emerging concern because of their adverse effects on aquatic animals and humans. In this study, we demonstrated that bisphenol A, S, and F (BPA, BPS, BPF) at environmental concentrations induced cardiotoxicity in zebrafish embryos. BPA decreased heart rate at 96 hpf (hours post fertilization) and increased the distance between the sinus venosus (SV) and bulbus arteriosus (BA), in zebrafish.

View Article and Find Full Text PDF

The experience needed to carry out engineering and construction in diatomaceous earth areas is currently lacking. This project studies the new Hang Shaotai high-speed railway passing through a diatomaceous earth area in Shengzhou, Zhejiang Province, and analyzes the hydrological and mechanical properties of diatomaceous earth on the basis of a field survey and laboratory. Moreover, a new antidrainage subgrade structure was proposed to address the rainy local environment, and field excitation tests were performed to verify the antidrainage performance and stability of the new subgrade structure.

View Article and Find Full Text PDF

Objectives: Though most bacteria remain susceptible to endogenous antimicrobial peptides, specific resistance mechanisms are known. As mimics of antimicrobial peptides, ceragenins were expected to retain antibacterial activity against Gram-positive and -negative bacteria, even after prolonged exposure. Serial passaging of bacteria to a lead ceragenin, CSA-13, was performed with representative pathogenic bacteria.

View Article and Find Full Text PDF

The Escherichia coli outer membrane phospholipid:lipid A palmitoyltransferase PagP is normally a latent enzyme, but it can be directly activated in outer membranes by lipid redistribution associated with a breach in the permeability barrier. We now demonstrate that a lipid A myristate deficiency in an E. coli O157:H7 msbB mutant constitutively activates PagP in outer membranes.

View Article and Find Full Text PDF

This study shows that lipid A of Escherichia coli O157 : H7 differs from that of E. coli K-12 in that it has a phosphoform at the C-1 position, which is distinctively modified by a phosphoethanolamine (PEtN) moiety, in addition to the diphosphoryl form. The pmrC gene responsible for the addition of PEtN to the lipid A of E.

View Article and Find Full Text PDF

The biogenesis of biological membranes hinges on the coordinated trafficking of membrane lipids between distinct cellular compartments. The bacterial outer membrane enzyme PagP confers resistance to host immune defenses by transferring a palmitate chain from a phospholipid to the lipid A (endotoxin) component of lipopolysaccharide. PagP is an eight-stranded antiparallel beta-barrel, preceded by an N-terminal amphipathic alpha-helix.

View Article and Find Full Text PDF

The enzymology of palmitate addition to lipid A can be traced to the early discovery of monosaccharide lipid A precursors, but the functional importance of lipid A palmitoylation in bacterial resistance to the host immune response has emerged only recently. Lipid A palmitoylation in enterobacteria is determined by a PhoP/PhoQ-activated gene pagP, which encodes an unusual outer membrane enzyme of lipid A biosynthesis. PagP structure and dynamics have now been elucidated by both NMR spectroscopy and X-ray crystallography.

View Article and Find Full Text PDF

Escherichia coli O157:H7 carries a chromosomal msbB1 and a plasmid-encoded msbB2 gene. We characterized msbB2 function as a homologue of msbB1 by examination of wild-type organisms and mutant strains that lacked functional msbB1, msbB2, and both msbB1 and msbB2. The msbB double-mutant strain generated pentaacyl lipid A, while the single-mutant strains synthesized hexaacyl lipid A.

View Article and Find Full Text PDF