Publications by authors named "Wenxue Zhong"

We present an alternative scheme to achieve nonreciprocal unconventional magnon blockade (NUMB) in a hybrid system formed by two microwave cavities and one yttrium iron garnet (YIG) sphere, where the pump and signal cavities interact nonlinearly with each other and the signal cavity is coupled to the YIG sphere. It is found that the nonlinear coupling occurs between the pump cavity and magnon modes due to the dispersive interactions among three bosonic modes. Meanwhile, the Kerr nonlinearity is present in the pump cavity.

View Article and Find Full Text PDF

We propose an alternative scheme to achieve the cross-correlations between magnon and photon in a hybrid nonlinear system including two microwave cavities and one yttrium iron garnet (YIG) sphere, where two cavities nonlinearly interact and meanwhile one of cavities couples to magnon representing the collective excitation in YIG sphere via magnetic dipole interaction. Based on dispersive couplings between two cavities and between one cavity and magnon with the larger detunings, the nonlinear interaction occurs between the other cavity and magnon, which plays a crucial role in generating quantum correlations. By analyzing the second-order correlation functions via numerical simulations and analytical calculations, the remarkable nonclassical correlations are existent in such a system, where the magnon blockade and photon antibunching could be obtainable on demand.

View Article and Find Full Text PDF

We explore the asymmetric Einstein-Podolsky-Rosen (EPR) steering of field modes via atomic coherent effects. A resonant four-level system in double-cascade configuration is under our consideration, where the atoms are excited by the applied fields from one cascade channel and two cavity modes are generated from the other cascade transition. The results show two cavity modes are suitable for achieving the steady-state one-way EPR steering.

View Article and Find Full Text PDF

Electromagnetically induced phase grating is theoretically investigated in the driven two-level quantum dot exciton system at the presence of the exciton-phonon interactions. Due to the phonon-induced coherent population oscillation, the dispersion and absorption spectra are sharply changed and the phase modulation is enhanced via the high refractive index with nearly-vanishing absorption, which could effectively diffract a weak probe light into the first-order direction with the help of a standing-wave control field. Moreover, the diffraction efficiency of the grating can be easily manipulated by controlling the Huang-Rhys factor representing the exciton-phonon coupling, the intensity and detuning of the control field, and the detuning of the probe field.

View Article and Find Full Text PDF