Publications by authors named "Wenxuan Yin"

The progression of hepatoma is heavily influenced by the microenvironment. Tumor-associated macrophages (TAMs) are considered to play a critical role in the tumor microenvironment (TME) and increase the aggressiveness of hepatoma. The activation of hepatic stellate cells (HSCs) is involved in hepatoma progression, and accumulating evidence demonstrates a change in microRNA (miRNA) expression during HSC activation.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers identified three molecular subtypes of chordoma through advanced proteomic analysis, each associated with different clinical outcomes and biological behaviors related to immune response and cell growth.
  • * The study suggests targeted therapies for each subtype, showing promising results for treatments like denosumab, S-Gboxin, and anlotinib, which could lead to better precision treatment strategies for chordoma.
View Article and Find Full Text PDF

Small extracellular vesicles (exosomes) are important components of the tumor microenvironment. They are small membrane-bound vesicles derived from almost all cell types and play an important role in intercellular communication. Exosomes transmit biological molecules obtained from parent cells, such as proteins, lipids, and nucleic acids, and are involved in cancer development.

View Article and Find Full Text PDF

To select the appropriate polymer thin films for liquid oxygen composite hoses, the liquid oxygen compatibility and the cryogenic mechanical properties of four fluoropolymer films (PCTFE, ETFE, FEP and PFA) and two non-fluoropolymer films (PET and PI) before and after immersion in liquid oxygen for an extended time were investigated. The results indicated that the four fluoropolymers were compatible with liquid oxygen before and after immersion for 60 days, and the two non-fluoropolymers were not compatible with liquid oxygen. In addition, the cryogenic mechanical properties of these polymer films underwent changes with the immersion time, and the changes in the non-fluoropolymer films were more pronounced.

View Article and Find Full Text PDF

Here we perform a review on applications and funded projects at Division of Physiology and Integrative Biology in Department of Life Sciences sponsored by National Natural Science Foundation of China in the past ten years. Based on the research fields of applications and funded projects and the funding cost, we analyzed the sub-disciplines of the funded applications, key support areas, research frontiers and trends in the subjects of physiology and integrative biology, which gives us an insight into the future applications to optimize the layout of research areas in Division of Physiology and Integrative Biology.

View Article and Find Full Text PDF

Borne paint was studied in the article in which the solvent water was regarded as a variable factor. A series of paint samples with different percentage of water were configured before observing their storage performance and microstructures by using Fourier-transform infrared (FTIR) ATR (attenuated total reflection) spectroscopy and diffuse reflectance (DF) FTIR spectroscopy. The effects of construction process and solvent water on the coating film were examined through analyzing the changes of internal functional groups before and after coating.

View Article and Find Full Text PDF

The present paper is a preliminary exploration of the possible way the gallstones are formed. Five categories of gallstones from clinical surgery in Xuzhou region were extracted by a series of solvents. Fourier transform infrared spectroscopy (FTIR) was used to characterize the structure of morphological changes between gallstone and residue by extracting.

View Article and Find Full Text PDF

Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca(2+) oscillation in pancreatic β-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca(2+) oscillation we designed and conducted experiments in intact primary pancreatic β-cells.

View Article and Find Full Text PDF

Previous studies have indicated that ERp44 inhibits inositol 1,4,5-trisphosphate (IP(3))-induced Ca(2+) release (IICR) via IP(3)R(1), but the mechanism remains largely unexplored. Using extracellular ATP to induce intracellular calcium transient as an IICR model, Ca(2+) image, pull down assay, and Western blotting experiments were carried out in the present study. We found that extracellular ATP induced calcium transient via IP(3)Rs (IICR) and the IICR were markedly decreased in ERp44 overexpressed Hela cells.

View Article and Find Full Text PDF

Carbon dioxide is a major sort of greenhouse gas as well as important carbon resource. With the developments of industries, emission of carbon dioxide has increased sharply. Hence, controls of carbon dioxide emission and resource transformation have become the hotspot of current study.

View Article and Find Full Text PDF

We examined the role and molecular mechanism of cADPR action on Ca(2+) spark properties in mouse bladder smooth muscle. Dialysis of cADPR with patch pipettes increased frequency and amplitude of spontaneous transient out currents (STOCs) to 6.1+/-0.

View Article and Find Full Text PDF

Background: Cardiomyocytes derived from murine embryonic stem (ES) cells possess various membrane currents and signaling cascades link to that of embryonic hearts. The role of atrial natriuretic peptide (ANP) in regulation of membrane potentials and Ca(2+) currents has not been investigated in developmental cardiomyocytes.

Methodology/principal Findings: We investigated the role of ANP in regulating L-type Ca(2+) channel current (I(CaL)) in different developmental stages of cardiomyocytes derived from ES cells.

View Article and Find Full Text PDF

In the simulation experiments in vitro of the formation of gallstone, adenosine-triphosphate(ATP)-Co(2+)-deoxycholic acid(DC) gel system was chosen to study the periodic precipitation progress. The effect of ATP on the Co(2+)-DC gel system was also determined, and the structure of the periodic precipitation formed was characterized by FTIR. The results show that the patterns formed in the systems with ATP are different, ATP affected the rate and structure of precipitation through its variable participation in the metal coordination complexes as judged by the phosphate P=O bands and the deoxycholate COO- symmetric and asymmetric vibration bands as measured by FTIR Theses spectroscopic differences were correlated with color and pattern differences in the precipitates.

View Article and Find Full Text PDF

FK506 binding protein 12.6 kDa (FKBP12.6), a protein that regulates ryanodine Ca(2+) release channels, may act as an important regulator of insulin secretion.

View Article and Find Full Text PDF

The beta-globin locus control region (LCR) is able to enhance the expression of all globin genes throughout the course of development. However, the chromatin structure of the LCR at the different developmental stages is not well defined. We report DNase I and micrococcal nuclease hypersensitivity, chromatin immunoprecipitation analyses for histones H2A, H2B, H3, and H4, and 3C (chromatin conformation capture) assays of the normal and mutant beta-globin loci, which demonstrate that nucleosomes at the DNase I hypersensitive sites of the LCR could be either depleted or retained depending on the stages of development.

View Article and Find Full Text PDF

Extracellular ATP (eATP) induces an intracellular Ca(2+) transient by activating phospholipase C (PLC)-associated P2X4 purinergic receptors, leading to production of inositol 1,4,5-trisphosphate (IP3) and subsequent Ca(2+) release from intracellular stores in mouse pancreatic beta-cells. Using laser scanning confocal microscopy, Ca(2+) indicator fluo-4 AM, and the cell permeable nuclear indicator Hoechst 33342, we examined the properties of eATP-induced Ca(2+) release in pancreatic beta-cell nuclei. eATP induced a higher nuclear Ca(2+) transient in pancreatic beta-cell nuclei than in the cytosol.

View Article and Find Full Text PDF

Targeted gene repair mediated by single-stranded DNA oligonucleotides (SSOs) is a promising method to correct the mutant gene precisely in prokaryotic and eukaryotic systems. We used a HeLa cell line, which was stably integrated with mutant enhanced green fluorescence protein gene (mEGFP) in the genome, to test the efficiency of SSO-mediated gene repair. We found that the mEGFP gene was successfully repaired by specific SSOs, but the efficiency was only approximately 0.

View Article and Find Full Text PDF

Background: Hollow smooth muscle organs such as the bladder undergo significant changes in wall tension associated with filling and distension, with attendant changes in muscle tone. Our previous study indicated that stretch induces Ca(2+) release occurs in the form of Ca(2+) sparks and Ca(2+) waves in urinary bladder myocytes. While, the mechanism underlying stretch-induced Ca2+ release in smooth muscle is unknown.

View Article and Find Full Text PDF

To delineate the relationship between epigenetic modifications and hemoglobin switching, we compared the pattern of histone acetylation and pol II binding across the beta-globin locus at fetal and adult stages of human development. To make this comparison possible, we introduced an external control into experimental samples in chromatin immunoprecipitation (ChIP) assays. Using this common standard, we found that the locus control region (LCR) was acetylated to the same level at all stages, whereas acetylation levels at the individual gene regions correlated with the state of transcription.

View Article and Find Full Text PDF

High-level transcription of the globin genes requires the enhancement by a distant element, the locus control region (LCR). Such long-range regulation in vivo involves spatial interaction between transcriptional elements, with intervening chromatin looping out. It has been proposed that the clustering of the HS sites of the LCR, the active globin genes, as well as the remote 5' hypersensitive sites (HSs) (HS-60/-62 in mouse, HS-110 in human) and 3'HS1 forms a specific spatial chromatin structure, termed active chromatin hub (ACH).

View Article and Find Full Text PDF

Naphthenic acid (NA) was mixed with PC88A in heptane, and 10 moL x L(-1) KOH aqueous solution was used to saponify the solution subsequently. The transparent and clear appearance of the obtained solution indicated the formation of w/o micell and microemusion. In the present study, micell with high saponification percentage (80%) was used to extract neodymium.

View Article and Find Full Text PDF

Non-coding exons of epsilon-globin mRNA originating within the 236 kb upstream region of the epsilon-globin gene were identified in human primary tissues and K562 cells. One predominant type of upstream epsilon mRNA, which originated in the -76 kb region 5' to the epsilon gene, was present in human primary tissues, whereas 11 other isoforms were identified in K562 cells. Fragment from the -76 kb region possessed promoter activity and a prominent DNase I hypersensitive site was formed in the region approximately 2 kb 5' to the -76 kb promoter in human fetal liver, but not in K562 cells.

View Article and Find Full Text PDF

In transient transfection assays deletions, insertions, or truncations are broadly used to define cis regulatory elements, such as promoters, enhancers, and silencers. This application is based on the assumption that size changes of a test fragment have little or no effect on the apparent activity of the reporter genes. While it is known that unusually large size of a construct, such as PAC DNA, substantially reduces transfection efficiency, the size effect of a DNA fragment ranging from a couple of hundred basepairs to a few thousand basepairs, within which most transient transfection assays are performed, has not been rigorously investigated.

View Article and Find Full Text PDF

This is an in vitro model to mimic the conditions present during gallstone formation. Adenosine mono-phosphate (AMP), an important bio-molecule, was chosen. Its effect on the formation of periodic/chaotic patterns in the deoxycholate-CuCl2-gel and deoxycholate-CuCl2-glucose-gel systems were studied.

View Article and Find Full Text PDF

Previous studies have suggested that juxtaposition of a downstream enhancer to the fetal gamma-globin gene results in reactivation of the gamma-gene in adult erythrocytes of individuals with hereditary persistence of fetal hemoglobin (HPFH). To test the hypothesis in a much stricter basis, we produced beta locus YAC transgenic mice carrying an exact beta locus replicate of a deletional HPFH mutation, HPFH 2. Although the gamma-globin gene was expressed in the HPFH 2/beta locus YAC (HPFH2/YAC) transgenic mice in the early stage of development, it was completely silenced in the adult mice.

View Article and Find Full Text PDF