Accurate diagnosis and classification of kidney cancer are crucial for high-quality healthcare services. However, the current diagnostic platforms remain challenges in the rapid and accurate analysis of large-scale clinical biosamples. Herein, we fabricated a bifunctional smart nanoplatform based on tannic acid-modified gold nanoflowers (TA@AuNFs), integrating nanozyme catalysis for colorimetric sensing and self-assembled nanoarray-assisted LDI-MS analysis.
View Article and Find Full Text PDFThe authentication of the entomological origin of honey is a widespread concern, necessitating the prompt establishment of an effective approach for distinguishing between honey (ACH) and honey (AMH). Hydroxy fatty acids (HFAs) found in honey are bee-derived components synthesized by the mandibular glands of worker bees. We previously discovered significant variations in the hydroxy fatty acid composition between ACH and AMH, suggesting their potential as indicators for identifying the authenticity of the entomological origin of honey.
View Article and Find Full Text PDFIntercellular communication often relies on exosomes as messengers and is critical for cancer metastasis in hypoxic tumor microenvironment. Some circular RNAs (circRNAs) are enriched in cancer cell-derived exosomes, but little is known about their ability to regulate intercellular communication and cancer metastasis. Here, by systematically analyzing exosomes secreted by non-small cell lung cancer (NSCLC) cells, a hypoxia-induced exosomal circPLEKHM1 is identified that drives NSCLC metastasis through polarizing macrophages toward to M2 type.
View Article and Find Full Text PDFBACKGROUNDImproving and predicting tumor response to immunotherapy remains challenging. Combination therapy with a transforming growth factor-β receptor (TGF-βR) inhibitor that targets cancer-associated fibroblasts (CAFs) is promising for the enhancement of efficacy of immunotherapies. However, the effect of this approach in clinical trials is limited, requiring in vivo methods to better assess tumor responses to combination therapy.
View Article and Find Full Text PDFPrevious researches have demonstrated that the silica nanoparticles (SiNPs), which are widely used in all aspects of life, are hazardous to the male reproductive system. However, the cellular and molecular mechanism underlying SiNPs toxicity to the epididymis remain unclear. In this present study, a total of 60 male mice were separated into 4 groups and then treated to SiNPs for 7 consecutive days at a dose of 0, 2.
View Article and Find Full Text PDFNeural Regen Res
February 2024
Intracerebral hemorrhage is a life-threatening condition with a high fatality rate and severe sequelae. However, there is currently no treatment available for intracerebral hemorrhage, unlike for other stroke subtypes. Recent studies have indicated that mitochondrial dysfunction and mitophagy likely relate to the pathophysiology of intracerebral hemorrhage.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Achieving the conversion from surface waves (SWs) to propagating waves has captivated long-standing interest, and various ingenious metasurfaces benefiting from the powerful control capability for electromagnetic waves are able to realize efficient SWs directional radiation. Nevertheless, most existing schemes still suffer from the bottlenecks of single radiation channel, uncontrollable radiation intensity, and immutable radiation pattern, which immensely hinder their practical application in high-integration intelligent devices. Herein, a series of appealing strategies are proposed to achieve the dual-channel SWs directional radiation with customizable radiation intensity and switchable radiation pattern.
View Article and Find Full Text PDFThe fifth-generation (5G) wireless communication has an urgent need for target tracking. Digital programmable metasurface (DPM) may offer an intelligent and efficient solution owing to its powerful and flexible controls of electromagnetic waves and advantages of lower cost, less complexity and smaller size than the traditional antenna array. Here, we report an intelligent metasurface system to perform target tracking and wireless communications, in which computer vision integrated with a convolutional neural network (CNN) is used to automatically detect the locations of moving targets, and the dual-polarized DPM integrated with a pre-trained artificial neural network (ANN) serves to realize the smart beam tracking and wireless communications.
View Article and Find Full Text PDFA bendable transmission line (TL) of spoof surface plasmon polaritons (SSPPs) is presented, which can maintain good transmission performance despite of the deformation caused by bending. Such a TL consists of flexible dielectric substrate and ultrathin metallic strip with zigzag decorations that are designed to support the propagation of SSPPs with strong field confinement and low radiation loss. Furthermore, the proposed SSPP TL is used to excite an amplifier chip efficiently, reaching high and stable gains with nearly no degradation of amplification in the bending states.
View Article and Find Full Text PDFAmplitude-phase control for circular polarized (CP) waves is experiencing a research upsurge in electromagnetics owing to the kaleidoscopic electromagnetic responses and promising application prospects of circular polarizations, and chiral metasurfaces are more facile to achieve a series of intriguing chiral phenomena than natural materials. However, it is difficult for most existing chiral metasurfaces to independently tailor the amplitude and phase of left-handed circular polarized and right-handed circular polarized waves at the same frequency as they suffer the drawbacks of large thickness, multiple layers, and complex structure. Herein, an innovative strategy of single-layer achiral metasurfaces of thickness 0.
View Article and Find Full Text PDFTransmission line is a basic component in all passive devices, integrated circuits, and systems. Microstrip is the most popular transmission line in the microwave and millimeter-wave frequencies, and has been widely used in current electronic devices, circuits, and systems. One of the important issues to be solved in such applications is the relatively large transmission loss of microstrip.
View Article and Find Full Text PDFThe discrete coordinate transformation (DCT), as a unique technique to control the electromagnetic waves, has been applied for creating all-dielectric devices recently. To extend the applicability of this technique, we propose the concept of multiple discrete coordinate transformation, which serves to deal with more complicated geometries in the transformation domain. As an example, an all-dielectric absorber is created by compressing a pyramidal absorber to a third of its original thickness using the multiple DCT technique.
View Article and Find Full Text PDFIn the last decade, a technique termed transformation optics has been developed for the design of novel electromagnetic devices. This method defines the exact modification of magnetic and dielectric constants required, so that the electromagnetic behaviour remains invariant after a transformation to a new coordinate system. Despite the apparently infinite possibilities that this mathematical tool introduces, one restriction has repeatedly recurred since its conception: limited frequency bands of operation.
View Article and Find Full Text PDFA modified Luneburg lens based on Hamiltonian optical transformation with planar feeds is proposed in this Letter. The lens, made of conventional all-dielectric materials, does not have any kind of anisotropy. Therefore, in theory, its bandwidth of operation has no upper frequency limitations in contrast with recent designs utilizing metamaterials.
View Article and Find Full Text PDFA zone plate lens utilizing a refractive instead of diffractive approach is presented for broadband operation. By utilizing transformation optics, we compress the conventional hyperbolic lens into a flat one with a few zone plates made of all-dielectric materials. Such a transformed lens maintains the broadband performance of the original lens, thus providing a superior alternative to the diffractive Fresnel element which is inherently narrow band.
View Article and Find Full Text PDFCoordinate transformation is applied to design an all-dielectric device for Extraordinary Transmission (ET) in a single sub-wavelength slit. The proposed device has a broadband feature and can be applied from microwave to visible frequency bands. Finite-Difference Time-Domain (FDTD) simulations are used to verify the device's performance.
View Article and Find Full Text PDF