Genomics Proteomics Bioinformatics
July 2024
Plants possess diverse cell types and intricate regulatory mechanisms to adapt to the ever-changing environment of nature. Various strategies have been employed to study cell types and their developmental progressions, including single-cell sequencing methods which provide high-dimensional catalogs to address biological concerns. In recent years, single-cell sequencing technologies in transcriptomics, epigenomics, proteomics, metabolomics, and spatial transcriptomics have been increasingly used in plant science to reveal intricate biological relationships at the single-cell level.
View Article and Find Full Text PDFThe process of apoptotic cell clearance by phagocytes, known as efferocytosis, plays an essential role in maintaining homeostasis. Defects in efferocytosis can lead to inflammatory diseases such as atherosclerosis and autoimmune disorders. Therefore, the maintenance and promotion of efferocytosis are considered crucial for preventing these diseases.
View Article and Find Full Text PDFStomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H-ATPase phosphorylation.
View Article and Find Full Text PDFExisting CRISPR/Cas12a-based diagnostic platforms offer accurate and vigorous monitoring of nucleic acid targets, but have the potential to be further optimized for more efficient detection. Here, we profiled 16 Cas12a orthologs, focusing on their trans-cleavage activity and their potential as diagnostic enzymes. We observed the Mb2Cas12a has more robust trans-cleavage activity than other orthologs, especially at lower temperatures.
View Article and Find Full Text PDFStomatal guard cells (GCs) are highly specialized cells that respond to various stimuli, such as blue light (BL) and abscisic acid, for the regulation of stomatal aperture. Many signaling components that are involved in the stomatal movement are preferentially expressed in GCs. In this study, we identified four new such genes in addition to an aluminum-activated malate transporter, , and GDSL lipase, (), based on the expression analysis using public resources, reverse transcription PCR, and promoter-driven β-glucuronidase assays.
View Article and Find Full Text PDFFront Plant Sci
September 2021
Stomata in the epidermis of plants play essential roles in the regulation of photosynthesis and transpiration. Stomata open in response to blue light (BL) by phosphorylation-dependent activation of the plasma membrane (PM) H-ATPase in guard cells. Under water stress, the plant hormone abscisic acid (ABA) promotes stomatal closure the ABA-signaling pathway to reduce water loss.
View Article and Find Full Text PDFThe cell wall acts as one of the first barriers of the plant against various biotic stressors. Previous studies have shown that alterations in wall polysaccharides may influence crop disease resistance. In the grapevine family, several native species (e.
View Article and Find Full Text PDF5-aminolevulinic acid (ALA) modulates various defense systems in plants and confers abiotic stress tolerance. Enhancement of crop production is a challenge due to numerous abiotic stresses such as, salinity, drought, temperature, heavy metals, and UV. Plants often face one or more abiotic stresses in their life cycle because of the challenging growing environment which results in reduction of growth and yield.
View Article and Find Full Text PDFThe oomycete pathogen Hyaloperonospora arabidopsidis delivers diverse effector proteins into host plant cells to suppress the plant's innate immunity. In this study, we investigate the mechanism of action of a conserved RxLR effector, HaRxLL470, in suppressing plant immunity. Genomic, molecular and biochemical analyses were performed to investigate the function of HaRxLL470 and the mechanism of the interaction between HaRxLL470 and the target host protein during H.
View Article and Find Full Text PDFNitrogen (N) and carbon (C) are essential elements for plant growth and crop yield. Thus, improved N and C utilisation contributes to agricultural productivity and reduces the need for fertilisation. In the present study, we find that overexpression of a single rice gene, Oryza sativa plasma membrane (PM) H-ATPase 1 (OSA1), facilitates ammonium absorption and assimilation in roots and enhanced light-induced stomatal opening with higher photosynthesis rate in leaves.
View Article and Find Full Text PDFMol Plant Pathol
February 2021
Plasmopara viticola, the causal organism of grapevine downy mildew, secretes a vast array of effectors to manipulate host immunity. Previously, several cell death-inducing PvRXLR effectors have been identified, but their functions and host targets are poorly understood. Here, we investigated the role of PvRXLR111, a cell death-inducing RXLR effector, in manipulating plant immunity.
View Article and Find Full Text PDF, the casual oomycete of grapevine downy mildew, could cause yield loss and compromise berry quantity. Previously, we have identified several PvRXLR effectors that could suppress plant immunity to promote infection and disease development. In this study, the role of effector, PvRXLR53, in plant-microbe interaction was investigated.
View Article and Find Full Text PDFProduction of reactive oxygen species (ROS) is a key signal event for methyl jasmonate (MeJA)- and abscisic acid (ABA)-induced stomatal closure. We recently showed that reactive carbonyl species (RCS) stimulates stomatal closure as an intermediate downstream of hydrogen peroxide (H2O2) production in the ABA signaling pathway in guard cells of Nicotiana tabacum and Arabidopsis thaliana. In this study, we examined whether RCS functions as an intermediate downstream of H2O2 production in MeJA signaling in guard cells using transgenic tobacco plants overexpressing A.
View Article and Find Full Text PDFMany pathogenic fungi exploit stomata as invasion routes, causing destructive diseases of major cereal crops. Intensive interaction is expected to occur between guard cells and fungi. In the present study, we took advantage of well-conserved molecules derived from the fungal cell wall, chitin oligosaccharide (CTOS), and chitosan oligosaccharide (CSOS) to study how guard cells respond to fungal invasion.
View Article and Find Full Text PDFThe glucosinolate-myrosinase system is a well-known defense system that has been shown to induce stomatal closure in Brassicales. Isothiocyanates are highly reactive hydrolysates of glucosinolates, and an isothiocyanate, allyl isothiocyanate (AITC), induces stomatal closure accompanied by elevation of free cytosolic Ca2+ concentration ([Ca2+]cyt) in Arabidopsis. It remains unknown whether AITC inhibits light-induced stomatal opening.
View Article and Find Full Text PDF, the causal oomycete of grapevine downy mildew disease, secrets a series of RXLR effectors to manipulate host immunity. In this study, we characterized the role of a RXLR effector of , PvRXLR159, in plant-microbe interaction. Transcription of in was induced in the early stage of infection in grapevine ( 'Thomson Seedless').
View Article and Find Full Text PDFWe have demonstrated that reactive carbonyl species (RCS) function as an intermediate downstream of hydrogen peroxide (H2O2) production in abscisic acid (ABA) signaling for stomatal closure in guard cells using transgenic tobacco plants overexpressing alkenal reductase. We investigated the conversion of the RCS production into downstream signaling events in the guard cells. Both ABA and H2O2 induced production of the RCS, such as acrolein and 4-hydroxy-(E)-2-nonenal (HNE), in epidermal tissues of wild-type Arabidopsis thaliana plants.
View Article and Find Full Text PDFObjectives: To evaluate the diagnostic utility of quantitative parameters which generated in different regions of interests (ROIs) of benign and malignant breast lesions using contrast-enhanced sonography(CEUS).
Materials And Methods: 130 patients were evaluated with contrast harmonic imaging after the injection of a bolus dose of 4.8 ml SonoVue (Bracco Sp A, Milan, Italy).
Salicylic acid (SA) induces stomatal closure sharing several components with abscisic acid (ABA) and methyl jasmonate (MeJA) signaling. We have previously shown that two guard cell-preferential mitogen-activated protein kinases (MAPKs), MPK9 and MPK12, positively regulate ABA signaling and MeJA signaling in Arabidopsis thaliana. In this study, we examined whether these two MAPKs are involved in SA-induced stomatal closure using genetic mutants and a pharmacological, MAPKK inhibitor.
View Article and Find Full Text PDFDrought is responsible for a massive reduction in crop yields. In response to drought, plants synthesize the hormone ABA, which induces stomatal closure, thus reducing water loss. In guard cells, ABA triggers production of reactive oxygen species (ROS), which is mediated by NAD(P)H oxidases.
View Article and Find Full Text PDFStomata, formed by pairs of guard cells in the epidermis of terrestrial plants, regulate gas exchange, thus playing a critical role in plant growth and stress responses. As natural openings, stomata are exploited by microbes as an entry route. Recent studies reveal that plants close stomata upon guard cell perception of molecular signatures from microbes, microbe associated molecular patterns (MAMPs), to prevent microbe invasion.
View Article and Find Full Text PDFIsothiocyanates are enzymatically produced from glucosinolates in plants, and allyl isothiocyanate (AITC) induces stomatal closure in Arabidopsis thaliana. In this study, we investigated stomatal responses to AITC in Vicia faba. AITC-induced stomatal closure accompanied by reactive oxygen species (ROS) and NO production, cytosolic alkalization and glutathione (GSH) depletion in V.
View Article and Find Full Text PDFWe recently demonstrated that yeast elicitor (YEL)-induced stomatal closure requires a Ca(2+)-dependent kinase, CPK6. A Ca(2+)-independent kinase, Open Stomata 1 (OST1), is involved in stomatal closure induced by various stimuli including ABA. In the present study, we investigated the role of OST1 in YEL-induced stomatal closure in Arabidopsis using a knock-out mutant, ost1-3, and a kinase-deficient mutant, ost1-2.
View Article and Find Full Text PDF