Publications by authors named "Wenxiu Qin"

The degradation of haloacetic acids (HAAs) in aqueous environments poses a challenge due to their oxidative resistance. Given that HAAs are highly carcinogenic disinfection byproducts, it is imperative to develop effective degradation methods to reduce their potential health risk. In this study, we found that only 27.

View Article and Find Full Text PDF

Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-AlO mineral surface were examined. Results demonstrated that adding 0.

View Article and Find Full Text PDF

Honokiol (HK) and magnolol (MAG) are typical representatives of neolignans possessing a wide range of biological activities and are employed as traditional medicines in Asia. In the past few decades, HK and MAG have been proven to be promising chemical scaffolds for the development of novel neolignan drugs. This review focuses on recent advances in the medicinal chemistry of HK and MAG derivatives, especially their structure-activity relationships.

View Article and Find Full Text PDF

Purpose: In spinal tuberculosis surgery, topical administration of drugs to the lesion is a preventive treatment measure. The aim is to achieve better bacterial inhibition and to prevent complications. As one of the most common complications after spinal tuberculosis surgery, many factors can lead to surgical site infection (SSI).

View Article and Find Full Text PDF

Pyrogenic carbon (PC) including black carbons and engineered carbons can mediate the extracellular electron transfer to facilitate the biogeochemical reaction with organic pollutants. Yet, the role of carbon structures and iron minerals on PC-mediated microbial degradation is still lacking of understanding. Herein, we studied the electrochemical properties of PCs produced from varied feedstock with regards to the mediated degradation of p-nitrophenol (PNP) by Shewanella putrefaciens CN32 in anoxic system.

View Article and Find Full Text PDF

The migration and conversion of arsenic in the environment usually accompany by the redox of iron-bearing minerals. For instance, the oxidation of pyrite can generate reactive oxygen species (ROS) affecting the species of arsenic, but the types and roles of ROS have been unclear. This paper demonstrated the vital role of Fe(II) in the pyrite for the formation of ROS.

View Article and Find Full Text PDF

Frequent oil spill accidents and ever-increasing oily wastewater have become serious global environmental problems. To enhance the oil-sorption capacity and simplify the oil-recovery process, the construction of various advanced oil sorbents and oil-collecting devices is of great technological importance. Herein, a three-dimensional (3D) porous carbon-based hybrid monolith has been successfully fabricated, in which cobalt based metal-organic framework (Co-MOF) nanosheets are firstly immobilized on a carbon foam (CF) skeleton (denoted as Co-MOFs/CF) via a facile vapor-phase hydrothermal (VPH) technique followed by carbonation treatment under a N atmosphere into Co@C/CF.

View Article and Find Full Text PDF

Environmental concern associated with excess fluoride has intrigued the unceasing exploration of new multifunctional hybrid materials to mitigate any undesirable consequence to human health. Herein, a novel hybrid monolith has been successfully fabricated via a facile in-situ growth strategy for highly efficient defluoridation from contaminated waters, in which homogeneously dispersed UiO-66 particles are perfectly anchored on three dimensional (3D) porous carbon foam (CF). Benefiting from fully exposed active sites, excellent pore accessibility and efficient mass transport, the integrated UiO-66/CF hybrid monolith exhibits fast adsorption kinetics, and outstanding uptake capacity toward fluoride as high as 295 mg g, which greatly outperforms the previously reported adsorbents.

View Article and Find Full Text PDF

In an effort to provide early warnings for the occurrence of eutrophication, it is highly desirable to develop an accurate and efficient technique to ensure continuous monitoring of dissolved reactive phosphorus (DRP) in the aquatic environment from the viewpoint of environmental management. Herein, a new diffusive gradient in thin film (DGT) technique was developed and evaluated for in situ measurement of DRP in waters, in which Zr-based metal organic frameworks (MOFs, UiO-66) were utilized as aqueous binding agent (abbreviated as UiO-66 DGT). As expected, the UiO-66 DGT demonstrated high uptake capacity towards phosphorus (20.

View Article and Find Full Text PDF

Eutrophication of water bodies caused by the excessive phosphate discharge has constituted a serious threat on a global scale. It is imperative to exploit new advanced materials featuring abundant binding sites and high affinity to achieve highly efficient and specific capture of phosphate from polluted waters. Herein, water stable Zr-based metal organic frameworks (MOFs, UiO-66) with rational structural design and size modulation have been successfully synthesized based on a simple solvothermal method for effective phosphate remediation.

View Article and Find Full Text PDF

In this study, persulfate (PS) activation by nano-Fe(0) was used to degrade dichlorodiphenyltrichloroethane (DDT), and the mechanism of this process was elucidated with EPR, GC-MS and free-radical quenching studies. It was found that DDT was degraded efficiently in PS/nano-Fe(0), and GC-MS analysis showed that benzoic acid, benzyl alcohol, dichlorobenzophenone and 2,2-bis(p-chlorophenyl)-ethane were the dominant products of DDT degradation, while only dechlorination products (DDD and DDE) were observed in nano-Fe(0) without persulfate. EPR results showed that persulfate activation by nano-Fe(0) led to the production of more sulfate radicals and hydroxyl radicals, which accounted for DDT degradation.

View Article and Find Full Text PDF

Natural organic matter (NOM) significantly affects the fate, bioavailability, and toxicity of arsenic in the environment. In the present study, we investigated the oxidation of As(III) in the presence of hydroquinone (HQ) and benzoquinone (BQ), which were selected as model quinone moieties for NOM. It was found that As(III) was oxidized to As(V) in the presence of HQ or BQ at neutral conditions, and the oxidation efficiency of As(III) increased from 33% to 92% in HQ solutions and from 0 to 80% in BQ solutions with pH increasing from 6.

View Article and Find Full Text PDF

Recently, sulfate radical ( [Formula: see text] ) based-advanced oxidation technologies (AOTs) have been attracted great attention in the remediation of contaminated soil and groundwater. In the present study, Co(2+) ions activated peroxymonosulfate (PMS) system was used to degrade 1, 1, 1-trichloro-2, 2'bis(p-chlorophenyl) ethane (DDT) in aqueous solutions. It was found that DDT was efficiently degraded in the PMS/Co(II) solutions within several hours, and the degradation efficiency of DDT was dependent on the concentrations of PMS and Co(II), and the optimum molar ratio of PMS and Co(II) was 50:1.

View Article and Find Full Text PDF

Polychlorinated biphenyls (PCBs) pose potential ecological risk because of their high toxicity and carcinogenicity. Photodegradation, which is an important process for the removal of PCBs, is greatly influenced by the cosolvent and catalyst. Hence, it is important to explore their effects on the photodegradation behavior of PCBs.

View Article and Find Full Text PDF

Persulfate-based in situ chemical oxidation (ISCO) is a promising technique for the remediation of organic compounds contaminated soils. Electrokinetics (EK) provides an alternative method to deliver oxidants into the target zones especially in low permeable-soil. In this study, the flexibility of delivering persulfate by EK to remediate polychlorinated biphenyls (PCBs) polluted soil was investigated.

View Article and Find Full Text PDF

The acute and subacute toxicities of cadmium (Cd) to earthworm Eisenia fetida in the presence and absence of glyphosate were studied. Although Cd is highly toxic to E. fetida, the presence of glyphosate markedly reduced the acute toxicity of Cd to earthworm; both the mortality rate of the earthworms and the accumulation of Cd decreased with the increase of the glyphosate/Cd molar ratio.

View Article and Find Full Text PDF

Arsanilic acid (4-amino phenyl arsenic acid, ASA) is widely used in poultry production as feed additives, while most of ASA in the feed is excreted in the animal manure and released into the environment. However, the environmental behaviors of ASA were not well understood. In the present study, the photolysis behaviors of ASA and the toxicity of its metabolites to luminescent bacterium were studied.

View Article and Find Full Text PDF