Desmosomes play a crucial role in maintaining tissue barrier integrity, particularly in mechanically stressed tissues. The assembly of desmosomes is regulated by the cytoskeleton and its regulators, and desmosomes also function as a central hub for regulating F-actin. However, the specific mechanisms underlying the crosstalk between desmosomes and F-actin remain unclear.
View Article and Find Full Text PDFCell-cell mechanotransduction regulates tissue development and homeostasis. α-catenin, the core component of adherens junctions, functions as a tension sensor and transducer by recruiting vinculin and transducing signals that influence cell behaviors. α-catenin/vinculin complex-mediated mechanotransduction regulates multiple pathways, such as Hippo pathway.
View Article and Find Full Text PDFTissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level.
View Article and Find Full Text PDFTissues are subject to multiple mechanical inputs at the cellular level that influence their overall shape and function. In the small intestine, actomyosin contractility can be induced by many physiological and pathological inputs. However, we have little understanding of how contractility impacts the intestinal epithelium on a cellular and tissue level.
View Article and Find Full Text PDFBasal stem cells fuel development, homeostasis, and regeneration of the epidermis. The proliferation and fate decisions of these cells are highly regulated by their microenvironment, including the basement membrane and underlying mesenchymal cells. Basal progenitors give rise to differentiated progeny that generate the epidermal barrier.
View Article and Find Full Text PDFFor adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism.
View Article and Find Full Text PDF