Laser power transfer (LPT) is an emerging technology that can provide convenient and long-range wireless power to the ever-expanding array of electronic devices. One of the biggest challenges in implementing LPT systems is to realize receiver positioning and beam steering (RPBS) for directing power toward the intended target which, however, have only been investigated by a few studies. Herein, a set of design principles is proposed, intended to assist researchers in developing systematic schemes for RPBS.
View Article and Find Full Text PDFJ Clin Ultrasound
January 2024
Due to lymphocytic infiltration of the salivary and lacrimal glands, Sjogren's syndrome (SS), a systemic autoimmune illness that mostly affects the exocrine glands, causes dry mouth (xerostomia) and dry eyes (xerophthalmia). Additionally, SS is associated with various comorbidities such as cardiovascular diseases, infections, musculoskeletal diseases, and cancers. Among patients with SS, xerophthalmia frequently arises as a complication, leading to insufficient tear production or rapid tear evaporation, thereby causing discomfort, irritation, and a gritty sensation in the eyes.
View Article and Find Full Text PDFConventional treatments of bone tumor involve removal followed by radiation and chemotherapeutic drugs that may have limitations and cause secondary damage. The development of functional filling biomaterial has led to a new strategy for tumor therapy. In this study, a novel therapeutic ion selenium doped mesoporous bioactive glasses (Se/MBG) nanospheres were successfully synthesized by a facile sol-gel technique using cetyl trimethyl ammonium bromide (CTAB) as the template, which had uniform spherical morphology (≈ 400 nm), high surface area (>400 m/g) and mesopore volume (≈0.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2017
Terbium (Tb) doped mesoporous bioactive glasses (Tb/MBG) nanospheres were successfully synthesized by a facile sol-gel method using cetyl trimethyl ammonium bromide (CTAB) as the template. Results indicated that Tb/MBG had spherical morphology (100-200nm), higher specific surface area (250-350m/g) and narrow mesopore size distribution (2-3nm). In order to investigate the effects of Tb on the in vitro bioactivity, prepared Tb/MBG nanospheres were soaking in simulated body fluid (SBF) for 3 days, and results indicated incorporation Tb ions in the MBG nanospheres could improve the hydroxyapatite formation ability.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
October 2016
Samarium (Sm) incorporated mesoporous bioactive glasses (MBG) microspheres have been prepared using the method of alginate cross-linking with Ca(2+) ions. The in vitro bioactivities of Sm/MBG/alginate microspheres were studied by immersing in simulated body fluid (SBF) for various periods. The results indicated that the Sm/MBG/alginate microspheres have a faster apatite formation rate on the surface.
View Article and Find Full Text PDF