Publications by authors named "Wenxian Wu"

Emerging evidence indicates that lipid droplets (LDs) play important roles in lipid metabolism, energy homeostasis, and cell stress management. Notably, dysregulation of LDs is tightly linked to numerous diseases, including lipodystrophies, cancer, obesity, atherosclerosis, and others. The pivotal physiological roles of LDs have led to an exploration of research in recent years.

View Article and Find Full Text PDF

Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of among the four different clubroot susceptibility cultivars of oilseed rape ().

View Article and Find Full Text PDF

Although the relationship between macroautophagy/autophagy and Alzheimer disease (AD) is widely studied, the underlying mechanisms are poorly understood, especially the regulatory role of the initiation signaling of autophagy on AD. Here, we find that the ER transmembrane protein CANX (calnexin) is a novel interaction partner of the autophagy-inducing kinase ULK1 and is required for ULK1 recruitment to the ER under basal or starved conditions. Loss of CANX results in the inactivity of ULK1 kinase and inhibits autophagy flux.

View Article and Find Full Text PDF

Background: The Asian corn borer (ACB), Ostrinia furnacalis (Guenée), is a major pest restricting maize production in Asia. The Chinese government has approved the commercial planting of Bt-Cry1Ab maize (event DBN9936), but its control potential against the ACB in southern regions remains unclear. This study evaluated the sensitivity of ACB to Cry1Ab protein expressed in Bt-Cry1Ab maize and determined the control efficacy of Bt-Cry1Ab maize against the ACB in Sichuan Province, a major maize-producing region in southern China, based on pilot planting in the field, and larval feeding bioassays in the field and laboratory.

View Article and Find Full Text PDF

HxTx-Hv1h, a neurotoxic peptide derived from spider venom, has been developed for use in commercial biopesticide formulations. Cell Penetrating Peptides (CPPs) are short peptides that facilitate the translocation of various biomolecules across cellular membranes. Here, we evaluated the aphidicidal efficacy of a conjugated peptide, HxTx-Hv1h/CPP-1838, created by fusing HxTx-Hv1h with CPP-1838.

View Article and Find Full Text PDF

Short-chain fatty acids (SCFAs) have been increasingly evidenced to be important bioactive metabolites of the gut microbiota and transducers in controlling diverse psychiatric or neurological disorders via the microbiota-gut-brain axis. However, the precise mechanism by which brain SCFAs extert multiple beneficial effects is not completely understood. Our previous research has demonstrated that the acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is a novel target of the rapid and long-lasting antidepressant responses.

View Article and Find Full Text PDF

According to the latest evidence, the microbial metabolite Urolithin A (UA), known for its role in promoting cellular health, modulates CD8 T cell-mediated antitumor activity. However, the direct target protein of UA and its underlying mechanism remains unclear. Here, this research identifies ERK1/2 as the specific target crucial for UA-mediated CD8 T cell activation.

View Article and Find Full Text PDF

Ligusticum chuanxiong Hort. (Chuanxiong) is an important Chinese medicinal herb, whose rhizomes are widely used as raw materials for treating various diseases caused by blood stasis. The fresh tender stems and leaves of Chuanxiong are also consumed and have the potential as microgreens.

View Article and Find Full Text PDF

Objectives: This study aimed to analyse the experiences and feelings of patients with type A aortic dissection (TAAD) and their families during the medical treatment and referral process, investigate the entire process's needs and problems and provide evidence for improving the aortic dissection treatment system.

Design: A qualitative descriptive design using a phenomenological study. Face-to-face semistructured interviews were conducted.

View Article and Find Full Text PDF

Background: Recent numerous epidemiology and clinical association studies reported that ApoE polymorphism might be associated with the risk and severity of coronavirus disease 2019 (COVID-19), and yielded inconsistent results. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection relies on its spike protein binding to angiotensin-converting enzyme 2 (ACE2) receptor expressed on host cell membranes.

Methods: A meta-analysis was conducted to clarify the association between ApoE polymorphism and the risk and severity of COVID-19.

View Article and Find Full Text PDF

Introduction: During the arms race between plants and pathogens, pathogenesis-related proteins (PR) in host plants play a crucial role in disease resistance, especially PR1. PR1 constitute a secretory peptide family, and their role in plant defense has been widely demonstrated in both hosts and in vitro. However, the mechanisms by which they control host-pathogen interactions and the nature of their targets within the pathogen remain poorly understood.

View Article and Find Full Text PDF

Viruses typically hijack the cellular machinery of their hosts for successful infection and replication, while the hosts protect themselves against viral invasion through a variety of defense responses, including autophagy, an evolutionarily ancient catabolic pathway conserved from plants to animals. Double-membrane vesicles called autophagosomes transport trapped viral cargo to lysosomes or vacuoles for degradation. However, during an ongoing evolutionary arms race, viruses have acquired a strong ability to disrupt or even exploit the autophagy machinery of their hosts for successful invasion.

View Article and Find Full Text PDF

Botany-derived antimicrobial peptides (BAMPs), a class of small, cysteine-rich peptides produced in plants, are an important component of the plant immune system. Both in vivo and in vitro experiments have demonstrated their powerful antimicrobial activity. Besides in plants, BAMPs have cross-kingdom applications in human health, with toxic and/or inhibitory effects against a variety of tumor cells and viruses.

View Article and Find Full Text PDF

Ferroptosis is a form of regulated cell death that emerges to be relevant for therapy-resistant and dedifferentiating cancers. Although several lines of evidence suggest that ferroptosis is a type of autophagy-dependent cell death, the underlying molecular mechanisms remain unclear. Fin56, a type 3 ferroptosis inducer, triggers ferroptosis by promoting glutathione peroxidase 4 (GPX4) protein degradation via a not fully understood pathway.

View Article and Find Full Text PDF

The evolutionarily conserved ULK1 kinase complex acts as gatekeeper of canonical autophagy and regulates induction of autophagosome biogenesis. To better understand control of ULK1 and analyze whether ULK1 has broader functions that are also linked to the later steps of autophagy, we perform comprehensive phosphoproteomic analyses. Combining in vivo with in vitro data, we identify numerous direct ULK1 target sites within autophagy-relevant proteins that are critical for autophagosome maturation and turnover.

View Article and Find Full Text PDF

The protein kinase TBK1 is a central regulator of innate immune responses and autophagy, and ablation of either function has been linked to neuroinflammatory or degenerative diseases. Autophagy is an intracellular process that recycles old or damaged proteins and organelles. In recent years, the TBK1-dependent regulation of autophagy pathways has been characterized.

View Article and Find Full Text PDF

Autophagy is an intracellular recycling pathway with implications for intracellular homeostasis and cell survival. Its pharmacological modulation can aid chemotherapy by sensitizing cancer cells toward approved drugs and overcoming chemoresistance. Recent translational data on autophagy modulators show promising results in reducing tumor growth and metastasis, but also reveal a need for more specific compounds and novel lead structures.

View Article and Find Full Text PDF

Macroautophagy/autophagy and necroptosis represent two opposing cellular s tress responses. Whereas autophagy primarily fulfills a cyto-protective function, necroptosis is a form of regulated cell death induced via death receptors. Here, we aimed at investigating the molecular crosstalk between these two pathways.

View Article and Find Full Text PDF

Cisplatin-based treatment is the standard of care therapy for urothelial carcinomas. However, complex cisplatin resistance mechanisms limit the success of this approach. Both apoptosis and autophagy have been shown to contribute to this resistance.

View Article and Find Full Text PDF

Heterogeneity in physical and chemical properties is a common characteristic in a subsurface environment. This study investigated the effect of physico-chemical heterogeneity on arsenic (As) sorption and reactive transport under water extraction in a layered system with preferential flow paths. A flume experiment was performed to derive the spatio-temporal data of As reactive transport.

View Article and Find Full Text PDF

Receptor interacting serine/threonine kinase 1 (RIPK1) is the central mediator of tumor necrosis factor (TNF) signaling. It regulates both pro-survival/pro-inflammatory and cell death pathways. In order to fulfill this complex regulation, RIPK1 is regulated by several post-translational modifications, including ubiquitination, acetylation, and phosphorylation.

View Article and Find Full Text PDF

The mammalian ULK1 is the central initiating kinase of bulk and selective macroautophagy/autophagy processes. In the past, both autophagy-relevant and non-autophagy-relevant substrates of this Ser/Thr kinase have been reported. Here, we describe our recent finding that ULK1 also regulates TNF signaling pathways.

View Article and Find Full Text PDF

Autophagy, apoptosis, and necroptosis are stress responses governing the ultimate fate of a cell. However, the crosstalk between these cellular stress responses is not entirely understood. Especially, it is not clear whether the autophagy-initiating kinase ULK1 and the cell-death-regulating kinase RIPK1 are involved in this potential crosstalk.

View Article and Find Full Text PDF

Aims And Objectives: This research was conducted to explore the effectiveness of employing the healthcare failure mode and effect analysis method in the management of trial of labour after caesarean, with the aims of increasing vaginal birth after caesarean section rate and reducing potential risks that might cause severe complications.

Background: Previously high caesarean section rate in China and the "two children" policy leads to the situation where multiparas are faced with the choice of another caesarean or trial of labour after caesarean. Despite evidences showing the benefits of vaginal birth after caesarean, obstetricians and midwives in China tend to be conservative due to limited experience and insufficient clinical routines.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session365ov9qm2scvfmfgks3qlg8rh8m510tr): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once