Publications by authors named "Wenxi Liao"

Aggregation-induced emission (AIE) materials are attracting great attention in biomedical fields such as sensors, bioimaging, and cancer treatment, et al. due to their strong fluorescence emission in the aggregated state. In this contribution, a series of tetraphenylene-acetonitrile AIE compounds with D-A-D' structures were synthesized by Suzuki coupling reaction and Knoevenagel condensation, and their relationship of chemical structure and fluorescence properties was investigated in detail, among which TPPA compound was selected as the monomer owing to the longest emission wavelength at about 530 nm with low energy band gap ΔE 3.

View Article and Find Full Text PDF

Green roofs have been increasingly used to improve stormwater management, but poor vegetation performance on roof systems, varying with vegetation type, can degrade discharge quality. Biochar has been suggested as an effective substrate additive for green roofs to improve plant performance and discharge quality. However, research on the effects of biochar and vegetation on discharge quality in the long term is lacking and the underlying mechanisms involved are unclear.

View Article and Find Full Text PDF

In this contribution, a novel AIE monomers 2-(4-styrylphenyl)- 1,2-diphenylvinyl)styryl)pyridine (SDVPY) with smart fluorescent pH-sensitivity basing on tetraphenylethylene-pyridine were successfully synthesized for the first time, subsequently, a series of amphiphilic copolymers PEG-PY were achieved by reversible addition-fragmentation chain transfer (RAFT) polymerization of SDVPY and poly(ethylene glycol) methacrylate (PEGMA), which would self-assemble in water solution to form core-shell nanoparticles (PEG-PY FONs) with about 150 nm diameter. The PEG-PY FONs showed obvious fluorescence response to Fe, HCO and CO ions in aqueous solution owing to their smart pH-sensitivity and AIE characteristics, and their maximum emission wavelength could reversibly change from 525 nm to 624 nm. The as-prepared PEG-PY FONs showed also prospective application in cells imaging with the variable fluorescence for different pH cells micro-environment.

View Article and Find Full Text PDF

Urbanization has degraded ecosystem services on a global scale, and cities are vulnerable to long-term stresses and risks exacerbated by climate change. Green infrastructure (GI) has been increasingly implemented in cities to improve ecosystem functions and enhance city resilience, yet GI degradation or failure is common. Biochar has been recently suggested as an ideal substrate additive for a range of GI types due to its favorable properties; however, the generality of biochar benefits the GI ecosystem function, and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Unlabelled: Green roofs are exposed to high winds and harsh environmental conditions that can degrade vegetation and erode substrate material, with negative consequences to ecosystem services. Biochar has been promoted as an effective substrate additive to enhance plant performance, but unprocessed biochars are susceptible to wind and water erosion. Applications of granulated biochars or chemical dust suppressants are suggested as a means to mitigate biochar and substrate erosion; however, research on biochar type and chemical dust suppressant use on biochar and substrate erosion is lacking.

View Article and Find Full Text PDF

Biochar, due to its favourable physiochemical properties, has been promoted as an ideal substrate additive on green roofs, with potential benefits to hydrological function. However, biochar is susceptible to water erosion, which may result in biochar loss and water pollution. The use of granulated biochars or biochars in large particle sizes could potentially alleviate biochar erosion loss, but effects on leachate quality have not been investigated.

View Article and Find Full Text PDF

Green roofs have been widely promoted as a means to enhance ecosystem services in cities, but roofs present a harsh growing environment for plants. Biochar is suggested to be a highly beneficial substrate additive for green roof systems due to its low weight, high nutrient and water retention capacity, and recalcitrance. However, biochar is susceptible to wind and water erosion, which may result in biochar loss and negative environmental impacts.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionl8ctevjlurj6jhcr5204flt86mdes50i): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once