Autophagy is a conserved degradation pathway that regulates the clearance of paternal substrate at the early embryogenesis stage of animals. However, its mode of action is likely different in plants, which can regenerate through apomixis without fertilisation. Somatic embryogenesis (SE) is a unique plant process widely used for plant propagation and germplasm utilisation.
View Article and Find Full Text PDFAbnormal expression of genes regulating anther and pollen development and insufficient accumulation of male sterility (MS)- related metabolites lead to MS in cybrid pummelo Male sterility (MS) is a major cause of seedlessness in citrus, which is an important trait for fresh fruit. Understanding the mechanism of MS is important for breeding seedless citrus cultivars. In this study, we dissected the transcriptional, metabolic and physiological mechanisms of MS in somatic cybrid of pummelo (G1 + HBP).
View Article and Find Full Text PDFSecretory structures in terrestrial plants serve as reservoirs for a variety of secondary metabolites. Among these, the secretory cavity of the Rutaceae family is notable for containing essential oils with a wide range of applications. However, the molecular basis underlying secretory cavity development is unknown.
View Article and Find Full Text PDFCarotenoids directly influence citrus fruit color and nutritional value, which is critical to consumer acceptance. Elucidating the potential molecular mechanism underlying carotenoid metabolism is of great importance for improving fruit quality. Despite the well-established carotenoid biosynthetic pathways, the molecular regulatory mechanism underlying carotenoid metabolism remains poorly understood.
View Article and Find Full Text PDFCarotenoids contribute to fruit coloration and are valuable sources of provitamin A in the human diet. Abscisic acid (ABA) plays an essential role in fruit coloration during citrus fruit ripening, but little is known about the underlying mechanisms. Here, we identified a novel bZIP transcription activator called CsbZIP44, which serves as a central regulator of ABA-mediated citrus carotenoid biosynthesis.
View Article and Find Full Text PDFEfficient alkaline hydrogen evolution electrodes must be used for hydrogen production in anion exchange membrane water electrolyzers (AEMWEs). Therefore, we fabricated a NiMnS catalyst with a Mn-rich surface, which was self-supported on Ti paper through one-step electrodeposition. Mn doping endowed the catalyst with a unique hollow morphology and lattice-distorted structure.
View Article and Find Full Text PDFCytoplasmic male sterility (CMS) has long been used to produce seedless fruits in perennial woody crops like citrus. A male-sterile somatic cybrid citrus (G1 + HBP) was generated by protoplast fusion between a CMS callus parent 'Guoqing No. 1' Satsuma mandarin (, G1) and a fertile mesophyll parent Hirado Buntan pummelo (, HBP).
View Article and Find Full Text PDFConservation of crop wild relatives is critical for plant breeding and food security. The lack of clarity on the genetic factors that lead to endangered status or extinction create difficulties when attempting to develop concrete recommendations for conserving a citrus wild relative: the wild relatives of crops. Here, we evaluate the conservation of wild kumquat (Fortunella hindsii) using genomic, geographical, environmental, and phenotypic data, and forward simulations.
View Article and Find Full Text PDFBud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.
View Article and Find Full Text PDFSomatic embryogenesis (SE) is a key regeneration pathway in various biotechnology approaches to crop improvement, especially for economically important perennial woody crops like citrus. However, maintenance of SE capability has long been a challenge and becomes a bottleneck in biotechnology-facilitated plant improvement. In the embryogenic callus (EC) of citrus, we identified 2 csi-miR171c-targeted SCARECROW-LIKE genes CsSCL2 and CsSCL3 (CsSCL2/3), which exert positive feedback regulation on csi-miR171c expression.
View Article and Find Full Text PDFMicroRNA390 (miR390) is involved in plant growth and development by down-regulating the expression of the downstream genes () and (). There is a scarcity of research on the involvement of the miR390- pathway in the stem development of . Here, differentially expressed miRNAs during poplar stem development were screened by small RNA sequencing analysis, and a novel function of miR390b in stem development was revealed.
View Article and Find Full Text PDFApomixis, or asexual seed formation, is prevalent in via a mechanism termed nucellar or adventitious embryony. Here, multiple embryos of a maternal genotype form directly from nucellar cells in the ovule and can outcompete the developing zygotic embryo as they utilize the sexually derived endosperm for growth. Whilst nucellar embryony enables the propagation of clonal plants of maternal genetic constitution, it is also a barrier to effective breeding through hybridization.
View Article and Find Full Text PDFAlthough interactions between the cytoplasmic and nuclear genomes occurred during diversification of many plants, the evolutionary conflicts due to cytonuclear interactions are poorly understood in crop breeding. Here, we constructed a pan-mitogenome and identified chimeric open reading frames (ORFs) generated by extensive structural variations (SVs). Meanwhile, short reads from 184 accessions of citrus species were combined to construct three variation maps for the nuclear, mitochondrial, and chloroplast genomes.
View Article and Find Full Text PDFPolyploidization leads to novel phenotypes and is a major force in evolution. However, the relationship between the evolution of new traits and variations in the post-translational modifications (PTM) of proteins during polyploidization has not been studied. Acetylation of lysine residues is a common protein PTM that plays a critical regulatory role in central metabolism.
View Article and Find Full Text PDFSomatic embryogenesis (SE) is a major regeneration approach for in vitro cultured tissues of plants, including citrus. However, SE capability is difficult to maintain, and recalcitrance to SE has become a major obstacle to plant biotechnology. We previously reported that miR156-SPL modules regulate SE in citrus callus.
View Article and Find Full Text PDFOverexpression of miR171 restored SE competence in the recalcitrant citrus callus, and inhibition of miR171 function weakened SE competence in the strongly embryogenic citrus callus. Somatic embryogenesis (SE) is an important way of in vitro regeneration for plants. For perennial woody crops such as citrus, embryogenic callus is usually induced from unfertilized aborted ovules and widely used in biotechnology aided breeding.
View Article and Find Full Text PDFDespite its importance for the establishment of a carbon-neutral society, the electrochemical reduction of CO to value-added products has not been commercialized yet because of its sluggish kinetics and low selectivity. The present work reports the fabrication of a low-crystalline trimetallic (AuCuIn) CO electroreduction catalyst and demonstrates its high performance in a gaseous CO electrolyzer. The high Faradaic efficiency (FE) of CO formation observed at a low overpotential in a half-cell test is ascribed to the controlled crystallinity and composition of this catalyst as well as to its faster charge transfer, downshifted d-band center, and low oxophilicity.
View Article and Find Full Text PDFSomaclonal variation arising from tissue culture may provide a valuable resource for the selection of new germplasm, but may not preserve true-to-type characteristics, which is a major concern for germplasm conservation or genome editing. The genomic changes associated with dedifferentiation and somaclonal variation during long-term in vitro culture are largely unknown. Sweet orange was one of the earliest plant species to be cultured in vitro and induced via somatic embryogenesis.
View Article and Find Full Text PDFValencia orange (Citrus sinensis Osbeck) (VO) is a type of late-ripening sweet orange whose ripening occurs 4 to 5 months later than that of the mid-ripening common sweet orange (CO). Notably, the mastication trait of VO fruit is inferior to that of CO fruit. To date, how inferior pulp mastication trait forms in VO has not been determined.
View Article and Find Full Text PDFCitrus nucellar poly-embryony (NPE) is a mode of sporophytic apomixis that asexual embryos formed in the seed through adventitious embryogenesis from the somatic nucellar cells. NPE allows clonal propagation of rootstocks, but it impedes citrus cross breeding. To understand the cellular processes involved in NPE initiation, we profiled the transcriptomes and DNA methylomes in laser microdissection captured citrus apomictic cells.
View Article and Find Full Text PDFAlthough multiple microscopic techniques have been applied to horticultural research, few studies of individual organelles in living fruit cells have been reported to date. In this paper, we established an efficient system for the transient transformation of citrus fruits using an Agrobacterium-mediated method. Kumquat (Fortunella crassifolia Swingle) was used; it exhibits higher transformation efficiency than all citrus fruits that have been tested and a prolonged-expression window.
View Article and Find Full Text PDFAxillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary bud and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown.
View Article and Find Full Text PDFThe environment has constantly shaped plant genomes, but the genetic bases underlying how plants adapt to environmental influences remain largely unknown. We constructed a high-density genomic variation map of 263 geographically representative peach landraces and wild relatives. A combination of whole-genome selection scans and genome-wide environmental association studies (GWEAS) was performed to reveal the genomic bases of peach adaptation to diverse climates.
View Article and Find Full Text PDF