Publications by authors named "Wenwen Jing"

Acanthamoeba castellanii is a widespread unicellular eukaryote found in diverse environments, including tap water, soil, and swimming pools. It is responsible for severe infections, such as Acanthamoeba keratitis and granulomatous amebic encephalitis, particularly in individuals with immunocompromisation. The ability of protozoans to form dormant and persistent cysts complicates treatment, as current therapies are ineffective against cyst stages and suffer from poor specificity and side effects.

View Article and Find Full Text PDF

Infectious diseases are extremely important public health issues, where the design of effective, rapid, and convenient detection platforms is critical. In this study, we coupled SuCas12a2, a novel Cas12 family RNA-targeting nuclease, with conventional PCR and recombinase polymerase amplification (RPA), respectively, to develop novel detection approaches, named PCR-SuCas12a2 and RPA-SuCas12a2. SuCas12a2 possesses collateral cleavage activity and cuts the additional single-stranded RNA (ssRNA) added to the reaction system once the ternary complex RNA-SuCas12a2-CRISPR RNA (crRNA) is formed.

View Article and Find Full Text PDF

The outbreak poses health risks to community residents. However, it still has limitations for current clinical diagnostic methods (qPCR nucleic acid assay or IgM immunoassay), including specialized handling, expensive equipment, prolonged turnaround time, and false positives and negatives, highlighting the need to improve clinical diagnostic methods. Herein, we present a novel centrifugal microfluidics-based method for rapidly diagnosing infections (CHAMP system).

View Article and Find Full Text PDF

Objective: To develop a comprehensive and evidence-based early rehabilitation framework for critically ill patients, aiming to establish a systematic and scientifically grounded rehabilitation system.

Methods: A Delphi survey study was conducted, involving two rounds of consultations with 24 experts from critical care medicine, nursing, respiratory therapy, and rehabilitation medicine. Based on evidence from the literature, a draft rehabilitation system was created and evaluated using a Likert 5-point scale.

View Article and Find Full Text PDF

The arrest of neural crest-derived sympathoadrenal neuroblast differentiation contributes to neuroblastoma formation, and overriding this blocked differentiation is a clear strategy for treating high-risk neuroblastoma. A better understanding of neuroblast or neuroblastoma differentiation is essential for developing new therapeutic approaches. It has been proposed that Krueppel-like factor 7 (KLF7) is a neuroblastoma super-enhancer-associated transcription factor gene.

View Article and Find Full Text PDF

Introduction: Acanthamoeba infection is a serious public health concern, necessitating the development of effective and safe anti-Acanthamoeba chemotherapies. Poly (ADP-ribose) polymerases (PARPs) govern a colossal amount of biological processes, such as DNA damage repair, protein degradation and apoptosis. Multiple PARP-targeted compounds have been approved for cancer treatment.

View Article and Find Full Text PDF

A double-fibril network of the photoactive layer morphology is recognized as an ideal structure facilitating exciton diffusion and charge carrier transport for high-performance organic solar cells (OSCs). However, in the layer-by-layer processed OSCs (LbL-OSCs), polymer donors and small molecule acceptors (SMAs) are separately deposited, and it is challenging to realize a fibril network of pure SMAs with the absence of tight interchain entanglement as polymers. In this work, crystalline small molecule donors (SMDs), named TDZ-3TR and SeDZ-3TR, were designed and introduced into the L8-BO acceptor solution, forcing the phase separation and molecular fibrilization.

View Article and Find Full Text PDF

Dystrophic epidermolysis bullosa pruriginosa (DEB-Pr) is a rare subtype of dystrophic epidermolysis bullosa, and traditional treatments have limited efficacy. Dupilumab has demonstrated remarkable efficacy in relieving pruritus. In this case study, after traditional treatment failed, providers recommended the patient begin dupilumab to treat his pruritus.

View Article and Find Full Text PDF

Skin scarring is a frequent complication of the wound healing process. Bacterial contamination and prolonged inflammation in wounds are thought to play significant roles during scar formation, but little is known about their specific mechanisms of action. In this study, hypertrophic scar derived fibroblasts (HSFs) and paired normal skin derived fibroblasts (NSFs) were used to evaluate the effects of lipopolysaccharide (LPS) on inflammation-induced skin scarring and explore the inflammation-mediated mechanism of activity of LPS on dermal fibroblasts.

View Article and Find Full Text PDF

Additives are extensively explored for improving PEDOT:PSS performances mainly through the removal of excess PSS and as a secondary dopant. In this work, amine-containing additives are introduced to PEDOT:PSS solutions as processing additives where the interactions to the PSS are anticipated through electrostatic interactions. Such interactions affected solution property where the increased viscosity is found to significantly increase the out-of-plane conductivity of the PEDOT:PSS thin films.

View Article and Find Full Text PDF

Background: Gut microbiota plays a significant role in the colorectal cancer (CRC) process. Ectopic colonization of multiple oral bacteria is reportedly associated with CRC pathogenesis and progression, but the details remain unclear.

Methods: We enrolled a cohort of 50 CRC patients and 52 healthy controls from an East China population.

View Article and Find Full Text PDF

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of invasive non-Hodgkin lymphoma. 60-70% of patients are curable with current chemoimmunotherapy, whereas the rest are refractory or relapsed. Understanding of the interaction between DLBCL cells and tumor microenvironment raises the hope of improving overall survival of DLBCL patients.

View Article and Find Full Text PDF

A facile strategy was developed here to improve the film quality of nickel-based hole transporting layer (HTL) for efficient organic solar cell (OSC) applications. To prevent the agglomeration of Ni(NO ) during film deposition, acetylacetonate was added into the precursor solution, which led to the formation of an amorphous and glass-like state. After thermal annealing (TA) treatment, the film-forming ability could be further improved.

View Article and Find Full Text PDF

Constructing tandem and multi-blend organic solar cells (OSCs) is an effective way to overcome the absorption limitations of conventional single-junction devices. However, these methods inevitably require tedious multilayer deposition or complicated morphology-optimization procedures. Herein, sequential deposition is utilized as an effective and simple method to fabricate multicomponent OSCs with a double-bulk heterojunction (BHJ) structure of the active layer to further improve photovoltaic performance.

View Article and Find Full Text PDF

Dupilumab is the first human monoclonal antibody that treats atopic dermatitis (AD) by blocking interleukin 4 (IL-4) and interleukin 13 (IL-13), which can suppress the Th2 inflammatory reaction. Effective treatments for pediatric AD patients are limited; therefore, we aimed to assess the efficacy and safety of dupilumab in pediatric AD patients. Fifteen pediatric patients diagnosed with moderate to severe AD and treated with dupilumab were enrolled in this study.

View Article and Find Full Text PDF

Purpose: To develop and validate a multiparametric magnetic resonance imaging-based radiomics nomogram for differentiating malignant and benign soft-tissue tumors.

Methods: A total of 91 patients with pathologically confirmed soft-tissue tumors were enrolled between January 2017 and October 2020. Forty-eight patients were consecutively enrolled between November 2020 and March 2022, as a time-independent cohort.

View Article and Find Full Text PDF

Three-dimensional (3D) tracking of surface-tethered single particles reveals the dynamics of the molecular tether. However, most 3D tracking techniques lack precision, especially in the axial direction, for measuring the dynamics of biomolecules with a spatial scale of several nanometers. Here, we present a plasmonic imaging technique that can track the motion of ∼100 tethered particles in 3D simultaneously with sub-nanometer axial precision and single-digit nanometer lateral precision at millisecond time resolution.

View Article and Find Full Text PDF

As a new type of environmental pollutant, microplastics (MPs) can adsorb residual organochlorine pesticides (OCPs) in the soil and pose a severe threat to the soil ecosystems. To understand the interaction between soil MPs and OCPs, the sorption of two kinds of OCPs, including hexachlorocyclohexanes (HCHs) and dichlorodiphenyltrichloroethanes (DDTs), on polyethylene (PE) microplastics in soil suspension was studied through sorption kinetics and isotherm models. The effects of solution/soil ratio and MPs diameter on sorption were examined.

View Article and Find Full Text PDF

A micromixer is one of the most significant components in a microfluidic system. A three-dimensional micromixer was developed with advantages of high efficiency, simple fabrication, easy integration, and ease of mass production. The designed principle is based on the concepts of splitting-recombination and chaotic advection.

View Article and Find Full Text PDF

Measuring binding processes at the single-molecule level underpin significant functions in understanding biological events. Single-nanoparticle imaging techniques are providing a new concept for mapping the heterogeneous behaviors and characterizations of individual dynamics such as molecule-molecule interactions. Here, we develop the optical imaging techniques for directly counting and monitoring the binding and motion events of single nanoparticles linked to the substrate via the specific and reversible interactions between biomolecules.

View Article and Find Full Text PDF

With the increasing prevalence of antibiotic resistance, the need to develop antimicrobial susceptibility testing (AST) technologies is urgent. The current challenge has been to perform the antibiotic susceptibility testing in short time, directly with clinical samples, and with antibiotics over a broad dynamic range of clinically relevant concentrations. Here, a technology for point-of-care diagnosis of antimicrobial-resistant bacteria in urinary tract infections, by imaging the clinical urine samples directly with an innovative large volume solution scattering imaging (LVSi) system and analyzing the image sequences with a single-cell division tracking method is developed.

View Article and Find Full Text PDF

Rapid and sensitive detection of biomarkers is the key to the diagnosis of acute diseases. One example is the detection of troponin in myocardial infarction. Here, we report a gradient-based digital immunoassay method, which can achieve high-sensitivity cardiac troponin T (hs-cTnT) detection with only 1 μL of plasma sample.

View Article and Find Full Text PDF

Most drugs work by binding to receptors on the cell surface. Quantification of binding kinetics between drug and membrane protein is an essential step in drug discovery. Current methods for measuring binding kinetics involve extracting the membrane protein and labeling, and both have issues.

View Article and Find Full Text PDF

Most label-free detection technologies detect the masses of molecules, and their sensitivities thus decrease with molecular weight, making it challenging to detect small molecules. To address this need, we have developed a charge-sensitive optical detection (CSOD) technique, which detects the charge rather than the mass of a molecule with an optical fiber. However, the effective charge of a molecule decreases with the buffer ionic strength.

View Article and Find Full Text PDF

Antibiotic resistance is an increasing public health threat. To combat it, a fast method to determine the antibiotic susceptibility of infecting pathogens is required. Here we present an optical imaging-based method to track the motion of single bacterial cells and generate a model to classify active and inactive cells based on the motion patterns of the individual cells.

View Article and Find Full Text PDF