Flexible temperature sensors have diverse applications and a great potential in the field of temperature monitoring, including healthcare, smart homes and the automotive industry. However, the current flexible temperature sensor preparation generally suffers from process complexity, which limits its development and application. In this paper, a nickel oxide (NiO) flexible temperature sensor based on a low-temperature sintering technology is introduced.
View Article and Find Full Text PDFFlexible devices have extensive applications in areas including wearable sensors, healthcare, smart packaging, energy, automotive and aerospace sectors, and other related fields. Droplet printing technology can be utilized to print flexible electronic components with micro/nanostructures on various scales, exhibiting good compatibility and wide material applicability for device production. This paper provides a comprehensive review of the current research status of droplet printing technologies and their applications across various domains, aiming to offer a valuable reference for researchers in related areas.
View Article and Find Full Text PDFThe accurate and rapid detection and recognition of jet features are key to dynamic monitoring and online control of the electrospinning process. In this study, a real-time recognition system based on OpenCV was introduced into a coaxial laser-assisted electrospinning system to solve the difficulties of accurate jet recognition and to promote an image processing algorithm response. The jet images with laser assistance were more clearly visible than those without laser assistance, and a significant contrast in grayscale levels existed in the jet image to help distinguish jet features.
View Article and Find Full Text PDFThe application of natural small molecule (NSM) in electrospun fibers is the key to achieving powerful functionality and sustainable development. However, the lack of understanding regarding the mechanism for loading NSM hinders the advancement of high-performance functional fibers. This work clarified the loading mechanism of NSM in polymer solution by comparing the different behaviors of curcumin (Cur), phloretin (PL), and tea polyphenols (TP) blended ethyl cellulose (EC) solutions.
View Article and Find Full Text PDFFunctionalization of bio-based nanofibers is the development tendency of high-performance air filter. However, the conventional structural optimization strategy based on high solution conductivity greatly hinders the development of fully bio-based air filter, and not conducive to sustainable development. This work fabricated fully bio-based nanofibrous membrane with formaldehyde-adsorbable and antibacterial capabilities by electrospinning low-conductivity solution for high-performance air filtration and applied to lightweight mask.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Organic flame-retardant-loaded battery separator offers a new opportunity for battery safety. However, its poor thermal stability still poses serious safety issues. Inspired by Tai Chi, an "internal-cultivating and external-practicing" core-shell nanofibrous membrane was prepared by coaxial electrospinning, wherein the shell layer was a mixture of polyvinylidene fluoride, silicon dioxide (SiO), and graphene oxide (GO) and the core layer contained triphenyl phosphate (TPP).
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
The online monitoring of a multi-jet electrospinning process is critical to the achievement of stable mass electrospinning for industrial applications. In this study, the construction of an ejection state recognition system of a multi-jet electrospinning process based on image processing is reported. The ejection behaviors regarding multi-nozzle electrospinning were recorded by CMOS industrial cameras in real time.
View Article and Find Full Text PDFStability control of electrohydrodynamic (EHD) printing technology is urgent needed for efficient fabrication of flexible electronics. In this study, a new fast on-off controlling technology for micro droplets of EHD is proposed by applying an AC induced voltage. The suspending droplet interface is broken through quickly, and the impulse current can be significantly reduced from 527.
View Article and Find Full Text PDFMicromachines (Basel)
February 2023
Electrospray is a typical technology to prepare large amounts of droplets at micro/nano scale. Establishing the relationship between the processing parameters and the motion and distribution characteristics for electrospray droplets is an effective approach to guide the uniform deposition of the electrospray membrane. In this paper, a dynamic model of electrospray droplets based on the fully resolved direct numerical simulation (FR-DNS) method was constructed, and the spatial motion behaviors of charged droplets were simulated.
View Article and Find Full Text PDFWith the increasingly serious air pollution and the rampant coronavirus disease 2019 (COVID-19), preparing high-performance air filter to achieve the effective personal protection has become a research hotspot. Electrospun nanofibrous membrane has become the first choice of air filter because of its small diameter, high specific surface area and porosity. However, improving the filtration performance of the filter only cannot meet the personal needs: it should be given more functions based on high filtration performance to maximize the personal benefits, called, multifunctional, which can also be easily realized by electrospinning technology, and has attracted much attention.
View Article and Find Full Text PDFMass loading of functional particles on the surface of nanofibers is the key to efficient heavy metal treatment. However, it is still difficult to prepare nanofibers with a large number of functional particle loads on the surface simply and efficiently, which hinders the further improvement of performance and increases the cost. Here, a new one-step strategy was developed to maximize the adhesion of graphene oxide (GO) particle to the surface of polyvinylidene fluoride (PVDF) nanofibers, which was combined with coaxial surface modification technology and blended electrospinning.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2022
Antibacterial air filtration membranes are essential for personal protection during the pandemic of coronavirus disease 2019 (COVID-19). However, high-efficiency filtration with low pressure drop and effective antibiosis is difficult to achieve. To solve this problem, an innovative electrospinning system with low binding energy and high conductivity was built to enhance the jet splitting, and a fluffy nanofibrous membrane containing numerous ultrafine nanofibers and large quantities of antibacterial agents was achieved, which was fabricated by electrospinning polyamide 6 (PA6), poly(vinyl pyrrolidone) (PVP), chitosan (CS), and curcumin (Cur).
View Article and Find Full Text PDFThe Janus membrane has a huge prospect for personal comfortable protection. However, there still is a huge imbalance between the comfort and protection of the existing Janus membrane. There is an urgent need to further improve the comprehensive performance of the protective membrane to realize both protection and comfort.
View Article and Find Full Text PDFSelf-pumping wound dressings with directional water transport ability have been widely studied for their function of directional extraction of excessive biofluid from wounds while keeping the wound in a moderately humid environment to realize rapid wound healing. However, the existing solutions have not paid close attention to the fabrication of a nonirritating hydrophobic layer facing the wounds, which may cause irritation to wounds and thereby further worsen inflammation. Herein, a flexible and elastic thermoplastic polyurethane (TPU) hydrophobic microfiber mesh (TPU-HMM) produced by melt electrospinning (MES) is reported.
View Article and Find Full Text PDFHigh-performance air filtration was the key to health protection from biological and ultrafine dust pollution. A self-supporting, three-dimensional (3D) nanofibrous membrane with curled pattern was electrospun for the filtration, of which the micro-fluffy structure displayed high-filtration efficiency and low-pressure drop. The flow field in the 3D filtration membrane was simulated to optimize the process parameters to increase the filtration performance.
View Article and Find Full Text PDFThree-dimensional (3D) composite polyvinylidene fluoride (PVDF)/polyacrylonitrile (PAN) electrospun nanofibrous membranes combining both thick and thin nanofibers have been fabricated by the method of multi-jet electrospinning with sheath gas to realize high-efficiency air filtration under a low pressure drop. The thin PAN nanofibers form a dense membrane, with a strong capturing ability on the ultra-fine particles, while the thick PVDF nanofibers play a 3D supporting effect on the thin PAN nanofibers. In this case, the combination results in a fluffy membrane with higher porosity, which could achieve the airflow passing through the membrane without the air pressure drop.
View Article and Find Full Text PDFNanomaterials (Basel)
August 2020
Highly efficient air filtration with low pressure drop is the key to air purification. In this work, a self-powered electrospun nanofiber membrane with an electrostatic adsorption effect was prepared to improve the filtration efficiency of micro/nano particles. The composite membrane was comprised of polyvinyl chloride (PVC) nanofibers and polyamide-6 (PA6) nanofibers.
View Article and Find Full Text PDFMicromachines (Basel)
January 2020
The online recognition of jet mode is important for the accurate control and further application of electrohydrodynamic direct-writing (EDW) technology. An EDW system with a current detection module is built for jet mode recognition. The current of the EDW jet is measured to recognize the jet mode when printing patterned structures.
View Article and Find Full Text PDFMicromachines (Basel)
December 2019
The stable and continuous ejection of multiple jets with high densities is the key to the application of electrospinning technology. An arced multi-nozzle spinneret was designed to increase the production efficiency of electrospinning. The distribution of the electrical field was simulated to optimize the nozzles' distribution of the spinneret.
View Article and Find Full Text PDFMicromachines (Basel)
January 2019
The micro/nano current is an important characteristic to reflect the electrohydrodynamic direct-writing (EDW) process. In this paper, a direct-written current measurement system with a high signal to noise ratio was proposed to monitor the charged jets, providing the data basis for the promotion of stability and precision of the EDW jet. The electrical characteristics of the printing process were studied, the electrohydrodynamic direct-written current was associated with the stability of charged jet and the accuracy of direct-written patterns.
View Article and Find Full Text PDFMicromachines (Basel)
September 2018
Electrohydrodynamic direct-writing (EDW) is a developing technology for high-resolution printing. How to decrease the line width and improve the deposition accuracy of direct-written patterns has been the key to the promotion for the further application of EDW. In this paper, an airflow-assisted spinneret for electrohydrodynamic direct-writing was designed.
View Article and Find Full Text PDFMicromachines (Basel)
August 2018
The fast and precise direct-printing of micro three-dimensional (3D) structures is the important development trend for micro/nano fabrication technique. A novel method with probe arrays was built up to realize the controllable deposition of 3D electrospun nanofibrous structures. Firstly, several 3D nanofibrous structures were built on a single probe and 2-, 3-probes, which indicated that the probe height and probe interval played a key role on the 3D structure morphology.
View Article and Find Full Text PDFBased on the electrohydrodynamic (EHD) theory, a novel method of near-field electrospray is proposed to fabricate micropatterns with micro/nano-scale particles. Compared with conventional electrospray technology, the deposition area can be decreased to print a regular pattern according to the moving trajectory of the substrate by shortening the distance between the nozzle and the collector to several millimeters in near-field electrospray. The controlling strategies in the near-field electrospray deposition process were investigated.
View Article and Find Full Text PDFMicromachines (Basel)
February 2018
Electrospray is a simple and cost-effective method to fabricate micro-structured thin films. This work investigates the electrospray process of ZnO patterns. The effects of experimental parameters on jet characteristics and electrosprayed patterns are studied.
View Article and Find Full Text PDFMicromachines (Basel)
January 2018
A continuous near-field electrospray process has been developed to deposit micropatterns. Different from traditional electrospray technologies, the nozzle-to-substrate distance was shortened to less than 5 mm, and a glass capillary nozzle with a diameter of tens of microns was used. Steady and continuous ejection was achieved, and patterns with line widths of sub-100 μm were generated.
View Article and Find Full Text PDF