Publications by authors named "Wentong Long"

Article Synopsis
  • Sodium/glucose cotransporter 2 inhibitors (SGLT2is), such as empagliflozin, show potential heart protection benefits in individuals with or without diabetes and can inhibit a key cardiac sodium current linked to congenital long QT syndrome type 3 (LQT3).
  • Researchers used the whole-cell patch-clamp technique to study how empagliflozin affects late sodium current (late I) in various LQT3 mutations of the Nav1.5 channel.
  • Empagliflozin specifically inhibited late I in certain mutations without altering channel kinetics, suggesting it could be an effective targeted treatment for patients with LQT3 mutations in the inactivation gate area.
View Article and Find Full Text PDF

Aim: To examine the likelihood of mortality or rehospitalization following acute coronary syndrome with glyburide versus gliclazide use in adults with type 2 diabetes undergoing cardiac catheterization.

Research Design And Methods: This retrospective cohort study used clinical data linked with administrative health data from Alberta, Canada between April 2008 and March 2021. Three methods were used to define exposure to glyburide and gliclazide in the year before catheterization.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease is caused by mutations in the membrane receptor PKD1 or the cation channel PKD2. TACAN (also termed TMEM120A), recently reported as an ion channel in neurons for mechanosensing and pain sensing, is also distributed in diverse non-neuronal tissues, such as kidney, heart and intestine, suggesting its involvement in other functions. In this study, we found that TACAN is in a complex with PKD2 in native renal cell lines.

View Article and Find Full Text PDF

Background: SGLT2 (sodium/glucose cotransporter 2) inhibitors exert robust cardioprotective effects against heart failure in patients with diabetes, and there is intense interest to identify the underlying molecular mechanisms that afford this protection. Because the induction of the late component of the cardiac sodium channel current (late-) is involved in the etiology of heart failure, we investigated whether these drugs inhibit late-.

Methods: Electrophysiological, in silico molecular docking, molecular, calcium imaging, and whole heart perfusion techniques were used to address this question.

View Article and Find Full Text PDF

Vitamin D is known to elicit many biological effects in diverse tissue types and is thought to act almost exclusively upon its canonical receptor within the nucleus, leading to gene transcriptional changes and the subsequent cellular response. However, not all the observed effects of vitamin D can be attributed to this sole mechanism, and other cellular targets likely exist but remain to be identified. Our recent discovery that vitamin D is a partial agonist of the Transient Receptor Potential Vanilloid family 1 (TRPV1) channel may provide new insights as to how this important vitamin exerts its biological effects either independently or in addition to the nuclear vitamin D receptor.

View Article and Find Full Text PDF

Key Points: 25-Hydroxyvitamin D (25OHD) is a partial agonist of TRPV1 whereby 25OHD can weakly activate TRPV1 yet antagonize the stimulatory effects of the full TRPV1 agonists capsaicin and oleoyl dopamine. 25OHD binds to TRPV1 within the same vanilloid binding pocket as capsaicin. 25OHD inhibits the potentiating effects of PKC-mediated TRPV1 activity.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels are regulated by diverse stimuli comprising thermal, chemical, and mechanical modalities. They are also commonly regulated by phosphatidylinositol-4,5-bisphosphate (PIP2), with underlying mechanisms largely unknown. We here revealed an intramolecular interaction of the TRPP3 N and C termini (N-C) that is functionally essential.

View Article and Find Full Text PDF

Xenopus laevis oocytes are a useful heterologous expression system for expressing glucose transporters (GLUTs) and examining their functions. In this chapter, we provide a detailed protocol on oocyte extraction and preparation for GLUT9 protein expression. Furthermore, we describe the determination of GLUT9 overexpression level by biotinylation and Western blotting analysis.

View Article and Find Full Text PDF

Subcutaneous white adipose tissue (scWAT) is the major fat depot in humans and is a central player in regulating whole body metabolism. Skin exposure to UV wavelengths from sunlight is required for Vitamin D synthesis and pigmentation, although it is plausible that longer visible wavelengths that penetrate the skin may regulate scWAT function. In this regard, we discovered a novel blue light-sensitive current in human scWAT that is mediated by melanopsin coupled to transient receptor potential canonical cation channels.

View Article and Find Full Text PDF

Transient receptor potential (TRP) channels, subdivided into 6 subfamilies in mammals, have essential roles in sensory physiology. They respond to remarkably diverse stimuli, comprising thermal, chemical, and mechanical modalities, through opening or closing of channel gates. In this study, we systematically substituted the hydrophobic residues within the distal fragment of pore-lining helix S6 with hydrophilic residues and, based on Xenopus oocyte and mammalian cell electrophysiology and a hydrophobic gate theory, identified hydrophobic gates in TRPV6/V5/V4/C4/M8.

View Article and Find Full Text PDF

Human glucose transporter 9 (hSLC2A9) is critical in human urate homeostasis, for which very small deviations can lead to chronic or acute metabolic disorders. Human SLC2A9 is unique in that it transports hexoses as well as the organic anion, urate. This ability is in contrast to other homologous sugar transporters such as glucose transporters 1 and 5 (SLC2A1 &SLC2A5) and the xylose transporter (XylE), despite the fact that these transporters have similar protein structures.

View Article and Find Full Text PDF

High blood urate levels (hyperuricemia) have been found to be a significant risk factor for cardiovascular diseases and inflammatory arthritis, such as hypertension and gout. Human glucose transporter 9 (hSLC2A9) is an essential protein that mainly regulates urate/hexose homeostasis in human kidney and liver. hSLC2A9 is a high affinity-low capacity hexose transporter and a high capacity urate transporter.

View Article and Find Full Text PDF

Transient receptor potential (TRP) polycystin 2 and 3 (TRPP2 and 3) are homologous members of the TRP superfamily of cation channels but have different physiological functions. TRPP2 is part of a flow sensor, and is defective in autosomal dominant polycystic kidney disease and implicated in left-right asymmetry development. TRPP3 is reported to implicate in sour tasting in bipolar cells of taste buds of the tongue and in the regulation of pH-sensitive action potential in neurons surrounding the central canal of spinal cord.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is caused by mutations in PKD1, encoding polycystin-1 (PC1), or PKD2 (polycystin-2, PC2). Autosomal recessive PKD (ARPKD) is caused by mutations in PKHD1, encoding fibrocystin/polyductin (FPC). No molecular link between ADPKD and ARPKD has been determined.

View Article and Find Full Text PDF