Proc Natl Acad Sci U S A
January 2023
Implants are widely used in medical applications and yet macrophage-mediated foreign body reactions caused by implants severely impact their therapeutic effects. Although the extensive use of multiple surface modifications has been introduced to provide some mitigation of fibrosis, little is known about how macrophages recognize the stiffness of the implant and thus influence cell behaviors. Here, we demonstrated that macrophage stiffness sensing leads to differential inflammatory activation, resulting in different degrees of fibrosis.
View Article and Find Full Text PDFThe entry of implants triggers the secretion of damage associated molecular patterns (DAMPs) that recruit dendritic cells (DCs) and results in subsequent foreign body reaction (FBR). Though several studies have illustrated that the surface accessible area (SAA) of implants plays a key role in the process of DAMPs release and absorption, the effect of SAA on the immune reaction still remains unknown. Here, a series of TiO plates with different SAA is fabricated to investigate the relationship between SAA and FBR.
View Article and Find Full Text PDFMechanistic understanding of fibronectin (FN) adsorption which determines cell adhesion on cell-implant interfaces is significant for improving the osteoconduction and soft-tissue healing of implants. Here, it is shown that the adsorption behavior of FN on the titanium oxide surface (TiO ) is highly relative to its Pro-His-Ser-Arg-Asn (PHSRN) peptide. FN lacking PHSRN fails to bind to surfaces, resulting in inhibited cell adhesion and spreading.
View Article and Find Full Text PDFMacrophage activation determines the fate of biomaterials implantation. Though researches have shown that fibronectin (FN) is highly involved in integrin-induced macrophage activation on biomaterials, the mechanism of how nanosized structure affects macrophage behavior is still unknown. Here, titanium dioxide nanotube structures with different sizes are fabricated to investigate the effects of nanostructure on macrophage activation.
View Article and Find Full Text PDFSolid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(NS'O)I(CHCN)] ([]), resulting from sulfur acetylation by sodium iodoacetate of an [NiNS] dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by NS, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in []. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [], a cation but with coordinated solvent molecules.
View Article and Find Full Text PDFIn this work, a novel Fe-modified coconut shell biochar (Fe-CSB) was synthesized and utilized to remove phosphate from aqueous solution. Characterization results confirmed that the iron in the Fe(iii)-impregnated CSB existed mainly in the amorphous phase, as ferrihydrite and amorphous hydroxide, which substantially enhanced the phosphate adsorption. Batch experiments indicated that phosphate adsorption on the Fe-CSB was highly dependent on the pH, the humic acid, and temperature, while it was less affected by the nitrate.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Abuse of antibiotics and their residues in the environment results in the emergence and prevalence of drug-resistant bacteria and leads to serious health problems. Herein, a photon-controlled antibacterial platform that can efficiently kill drug-resistant bacteria and avoid the generation of new bacterial resistance was designed by encapsulating black phosphorus quantum dots (BPQDs) and pharmaceuticals inside a thermal-sensitive liposome. The antibacterial platform can release pharmaceuticals in a spatial-, temporal-, and dosage-controlled fashion because the BPQDs can delicately generate heat under near-infrared light stimulation to disrupt the liposome.
View Article and Find Full Text PDFPathogenic bacterial infections and drug resistance make it urgent to develop new antibacterial agents with targeted delivery. Here, a new targeting delivery nanosystem is designed based on the potential interaction between bacterial recognizing receptors on macrophage membranes and distinct pathogen-associated molecular patterns in bacteria. Interestingly, the expression of recognizing receptors on macrophage membranes increases significantly when cultured with specific bacteria.
View Article and Find Full Text PDFRecoveries of cobalt and lithium metals from spent lithium-ion batteries are very important for prevention of environmental pollution and alleviation of resource shortage. In this study, a hydrometallurgical route for the recovery of lithium fluoride was proposed. Lithium and cobalt could be first selectively leached into solution using formic acid and hydrogen peroxide.
View Article and Find Full Text PDF