Publications by authors named "Wenting Cheng"

Background: The randomized, phase 2 RENEW trial (NCT01721161) evaluated efficacy/safety of opicinumab (anti-LINGO-1) versus placebo in patients with first-episode unilateral acute optic neuritis (AON). Although no significant differences in the latency recovery of visual evoked potential (VEP) were observed between opicinumab and placebo groups in the intention to treat (ITT) population, the prespecified per-protocol (PP) population showed better recovery with opicinumab than with placebo. RENEWED (NCT02657915) was a one-visit, follow-up study 2 years after the last RENEW study visit (Week 32) designed to assess the long-term electrophysiological and clinical outcomes for participants previously enrolled and having received study treatment in RENEW.

View Article and Find Full Text PDF

Aptazyme is a chimera of functional nucleic acids, which integrates recognition and amplification elements to simplify the assay process and improve sensing efficiency. However, its application may be limited by signal leakage. In this work, we innovatively integrate the AβO aptamer and an MNAzyme (multicomponent nucleic acid enzyme) for highly efficient detection of AβO.

View Article and Find Full Text PDF

Dipeptidyl peptidase IV (DPPIV) is an enzyme belonging to the type II transmembrane serine protease family that has gained wide interest in the fields of hematology, immunology, and cancer biology. Moreover, DPPIV has emerged as a promising target for therapeutic intervention in type II diabetes. Due to its biological limitations, traditional strategies cannot meet the requirements of low abundance DPPIV analysis in complex environments.

View Article and Find Full Text PDF

The detection of a single biomarker is prone to false negative or false positive results. Simultaneous analysis of two biomarkers can greatly improve the accuracy of diagnosis. In this work, we designed a new method for coinstantaneous detection of two breast cancer biomarkers miRNA-21 and HER2 using the properties of duplex-specific nuclease (DSN).

View Article and Find Full Text PDF

Pulmonary macrophages exhibit a dose-dependent pattern in phagocytizing particles. Following engulfment, these macrophages are subsequently excreted with sputum, rendering macrophages and particles visible and quantifiable under light microscopy. Notably, elemental carbon within the mammalian body originates exclusively from external contaminants.

View Article and Find Full Text PDF

Inhaling polyhexamethylene guanidine (PHMG) aerosol, a broad-spectrum disinfectant, can lead to severe pulmonary fibrosis. Ferroptosis, a form of programmed cell death triggered by iron-dependent lipid peroxidation, is believed to play a role in the chemical-induced pulmonary injury. This study aimed to investigate the mechanism of ferroptosis in the progression of PHMG-induced pulmonary fibrosis.

View Article and Find Full Text PDF

Huge amounts of spent denitration catalysts are produced annually as waste from the flue gas denitration process, which will cause resource waste and environmental pollution. It is important to develop an efficient method for the recovery of metals from spent denitration catalysts. In this work, the leaching of vanadium (V) from the spent denitration catalyst by the sulfuric acid/oxalic acid combined solvent was investigated.

View Article and Find Full Text PDF

Topological materials and metamaterials opened new paradigms to create and manipulate phases of matter with unconventional properties. Topological D-class phases (TDPs) are archetypes of the ten-fold classification of topological phases with particle-hole symmetry. In two dimensions, TDPs support propagating topological edge modes that simulate the elusive Majorana elementary particles.

View Article and Find Full Text PDF

High-entropy alloy (HEA) nanoparticles have attracted great attention due to their excellent electrocatalytic properties. Herein, PtCuNiCoMn HEA nanoparticles supported on reduced graphene oxide (rGO) are synthesized via a solvothermal co-reduction method and are used as an electrocatalyst for the electrooxidation of methanol and formic acid. Owing to the synergistic effect between the component metals, the high-entropy effect, and the sluggish diffusion effect, the PtCuNiCoMn HEA nanoparticles possess significantly improved electrocatalytic activity and stability compared to PtCuNiCo, PtCuNi, PtCu, Pt nanoparticles, and the commercial Pt/C catalyst.

View Article and Find Full Text PDF

In this work, we demonstrate for the first time the application of the phosphorothioated-terminal hairpin formation and self-priming extension (PS-THSP) reaction for miRNA assays. A self-priming amplification accelerating CRISPR sensor was well-established for sensitive and specific miRNA detection by integrating the PS-THSP reaction and CRISPR/Cas12a system. The sensor consists of three steps: (1) the formation of a complete PS-THSP template in the presence of target miRNA and ligase; (2) the exponential isothermal amplification of the PS-THSP reaction under the action of DNA polymerase; (3) the activation of the CRISPR/Cas12a fluorescence system to generate signals.

View Article and Find Full Text PDF

Background And Objectives: Amyloid-related imaging abnormalities (ARIA) were the most common adverse events reported in the phase 3 ENGAGE and EMERGE trials of aducanumab, an anti-amyloid monoclonal antibody. ε4 carrier status has been shown to increase risk of ARIA in prior trials of aducanumab and other anti-amyloid therapies; however, the remainder of the human genome has not been evaluated for ARIA risk factors. Therefore, we sought to determine in a hypothesis-free manner whether genetic variants beyond influence risk of ARIA in aducanumab-treated patients.

View Article and Find Full Text PDF

Performance outcome (PerfO) measures are based on tasks performed by patients in a controlled environment, making their meaningful interpretation challenging to establish. Co-calibrating PerfO and patient-reported outcome (PRO) measures of the same target concept allow for interpretation of the PerfO with the item content of the PRO. The Rasch model applied to the discretized PerfO measure together with the PRO items allows expressing parameters related to the PerfO measure in the PRO metric for it to be linked to the PRO responses.

View Article and Find Full Text PDF

This study aimed to evaluate gemcitabine (GEM)/paclitaxel (PTX) co-loaded into a lecithin-based self-nanoemulsifying preconcentrate (SNEP) orally administered in a metronomic therapeutic manner against pancreatic cancer. SNEP was developed and evaluated, composed of Caproyl 90, Tween80, lecithin, TPGS, and propyl glycol at a ratio of 20:20:30:5:25, resulting in a droplet diameter of approximately 180 nm. Cell viability studies on MIA PaCa-2 demonstrated a synergetic effect at a proportion of 1:2 between PTX and GEM.

View Article and Find Full Text PDF

Biological and clinical studies have indicated that aberrant expression of circMTO1 served as a crucial biomarker for the diagnosis and prognosis of hepatocellular carcinoma (HCC) patients as well as a potential therapeutic target. However, the detection of circRNAs currently faces challenges such as homologous linear RNA interference and low-expression abundance of certain circRNAs. Therefore, we developed a triple amplification method based on catalytic hairpin assembly (CHA) activation by back-splice junction (BSJ), resulting in CHA products that triggered primer exchange reaction to generate DNAzyme.

View Article and Find Full Text PDF

Exosomal surface proteins are potentially useful for breast cancer diagnosis and awareness of risk. However, some detection techniques involving complex operations and expensive instrumentation are limited to advance to clinical applications. To solve this problem, we develop a dual-modal sensor combining naked-eye detection and electrochemical assay of exosomal surface proteins from breast cancer.

View Article and Find Full Text PDF

Matrix metalloproteinase-9 (MMP-9) has been implicated in various tumor cell invasions and metastases. In light of the limitations of traditional methods for MMP-9 detection, we have constructed a novel biosensor depending on cucurbit[8]uril (CB[8]) -mediated host-guest interactions and a sacrificial iron metal-organic framework (FeMOF). Herein, MMP9-specific peptides modified on the gold bare electrode are bonded to the FeMOF@AuNPs@peptide complex through CB[8] addition.

View Article and Find Full Text PDF

Due to its high efficiency and selectivity, cell-free biosynthesis has found broad utility in the fields of bioproduction, environment monitoring, and disease diagnostics. However, the practical application is limited by its low productivity. Here, we introduce the entropy-driven assembly of transcription templates as dynamic amplifying modules to accelerate the cell-free transcription process.

View Article and Find Full Text PDF

This work proposes a novel bioassay designed to detect the 2B receptor of serotonin in serum samples, which can serve as a risk marker for cancer recurrence after surgical resection. Traditional methods for detecting this marker are often costly and time-consuming, requiring specialized reagents and equipment. The new bioassay is designed to enable direct and reagent-less detection of the 2B receptor in serum samples, without the need of antibodies or enzymes.

View Article and Find Full Text PDF

Topological metals are conducting materials with gapless band structures and nontrivial edge-localized resonances. Their discovery has proven elusive because traditional topological classification methods require band gaps to define topological robustness. Inspired by recent theoretical developments that leverage techniques from the field of C-algebras to identify topological metals, here, we directly observe topological phenomena in gapless acoustic crystals and realize a general experimental technique to demonstrate their topology.

View Article and Find Full Text PDF

Sangelose (SGL) is a novel hydroxypropyl methylcellulose (HPMC) derivative that has been hydrophobically modified. Due to its high viscosity, SGL has the potential as a gel-forming and release-rate-controlled material for application in swellable and floating gastroretentive drug delivery systems (GRDDS). The aim of this study was to develop ciprofloxacin (CIP)-loaded GRDDS tablets comprised of SGL and HPMC in order to extend CIP exposure in the body and achieve optimal antibiotic treatment regimes.

View Article and Find Full Text PDF

Huge amounts of MgCl·6HO are produced annually as a byproduct or waste from KCl production in the Qinghai province of China. An ecological and economic way to solve this problem is transforming the abandoned MgCl·6HO to valuable MgCO·3HO whiskers. The formation and phase transformation of MgCO·3HO whiskers were studied in the crystallization process, in which MgCl and NHHCO were precipitated in the presence of sodium dodecyl sulfate (SDS) at 50 °C.

View Article and Find Full Text PDF

Pathogen infestation results in significant losses of fruits and vegetables during handling, transportation, and storage. The use of synthetic fungicides has been a common measure for controlling plant pathogens. However, their excessive use of chemicals has led to increased environmental pollution, leaving large amounts of chemicals in agricultural products, posing a threat to human and animal health.

View Article and Find Full Text PDF

In recent years, combining different types of therapy has emerged as an advanced strategy for cancer treatment. In these combination therapies, oral delivery of anticancer drugs is more convenient and compliant. This study developed an irinotecan/rapamycin-loaded oral lecithin-based self-nanoemulsifying nanoemulsion preconcentrate (SNENP) and evaluated its synergistic combination effects on pancreatic cancer.

View Article and Find Full Text PDF

Fungal pathogen contamination is one of the most important factors affecting the postharvest quality and shelf life of wolfberry fruits. Therefore, the prevention and control of fungal pathogens that cause fruit rot has become particularly important. Volatile antifungal agents of biological origin have broad application prospects.

View Article and Find Full Text PDF

Three-dimensional (3D) structured organoids have become increasingly promising and effective models, and there is an urgent need for reliable models to assess health effects of inhaled pollutants on the human airway. In our study, we conducted a toxicity assessment of human airway organoids (hAOs) for tire wear particles (TWPs) as an emerging inhaled pollutant. We induced primary human bronchial epithelial cells (HBECs) to generated human airway organoids, which recapitulated the key features of human airway epithelial cells including basal cells, ciliated cells, goblet cells, and club cells.

View Article and Find Full Text PDF