This article develops a rapid performance evaluation approach for lower mobility hybrid robot, which provides guidance for manipulator evaluation, design, and optimization. First, a general position vector model of gravity center for the lower mobility hybrid robot in the whole workspace is constructed based on a general inverse kinematic model. A performance evaluation index based on gravity-center position is then proposed, where the coordinates pointing to the supporting direction are selected as the evaluation index of the robot performance.
View Article and Find Full Text PDFParallel kinematic machines have been applied in aerospace and automotive manufacturing due to their potentials in high speed and high accuracy. However, there exists coupling in parallel kinematic machines, which makes dynamic analysis, rigidity enhancement, and control very complicated. In this article, coupling characteristics of a 5-degree-of-freedom (5-dof) hybrid manipulator are analyzed based on a local index and a global index.
View Article and Find Full Text PDF