Blue phase liquid crystal (BPLC) lasers exhibit exceptional optical quality and tunability to external stimuli, holding significant promise for innovative developments in the field of flexible optoelectronics. However, there remain challenges for BPLC elastomer (BPLCE) lasers in maintaining good optical stability during stretching and varying temperature conditions. In this work, a stretchable laser is developed based on a well-designed BPLCE with a combination of partially and fully crosslinked networks, which can output a single-peak laser under small deformation (44.
View Article and Find Full Text PDFCellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFRecent progress in wound healing has highlighted the need for more effective treatment strategies capable of addressing the complex biological and physiological challenges of wound repair. Traditional wound dressings often fail to address the complex and evolving needs of chronic, acute, and burn wounds, particularly in terms of promoting healing, preventing infection, and supporting tissue regeneration. In response to these challenges, calcium alginate fibers (CAFs) have emerged as promising materials, characterized by their exceptional structural properties and diverse biological functions, offering significant commercial potential for the development of advanced wound dressings and therapeutic solutions.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Triterpenoids are the major active constituents of licorice, a well-known traditional medicinal herb. Licorice triterpenoids, represented by glycyrrhizin and glycyrrhetic acid, have a high structural diversity and are excellent lead compounds for the development of potent pharmaceuticals. However, their further application can be limited by insufficient activities, low bioavailability, and the presence of side effects, as well as the inefficiency of traditional plant extraction processes for compound production.
View Article and Find Full Text PDFIn this paper, we propose and experimentally demonstrate a novel compact multi-port multi-wavelength laser source (MP-MWL) for the optical I/O technology. The multi-wavelength DFB laser array is used for realizing the simultaneous emission of multiple wavelengths. The reconstruction equivalent chirp technique is used to design and fabricate the π-phase shifted DFB laser array to achieve precise wavelength spacing.
View Article and Find Full Text PDFBlue phase liquid crystals (BPLCs) have exhibited promising applications in 3D flexible displays due to their molecular-level self-assembled chiral structures, fast response, and tunable polarized colors. However, there remain challenges for spatiotemporal programming of 3D chiral color units for BPLC dynamic patterning. Herein, the programmable temporal evolution of micrometer-scale color units and spatial configuration switch of chiral modes are achieved by spontaneous ink diffusion-driven asymmetric lattice deformation in dual-chiral polymer-templated blue phases.
View Article and Find Full Text PDFMaterials (Basel)
October 2024
Femtosecond laser two-photon polymerization (TPP) technology, known for its high precision and its ability to fabricate arbitrary 3D structures, has been widely applied in the production of various micro/nano optical devices, achieving significant advancements, particularly in the field of photonic wire bonding (PWB) for optical interconnects. Currently, research on optimizing both the optical loss and production reliability of polymeric photonic wires is still in its early stages. One of the key challenges is that inadequate metrology methods cannot meet the demand for multiphysical measurements in practical scenarios.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
Diabetic retinopathy (DR) is a leading cause of blindness globally. Buyang Huanwu decoction (BHD) is a traditional Chinese medicine for treating DR, but its therapeutic mechanisms are not fully understood. This study aimed to elucidate and validate the underlying mechanisms of BHD in DR treatment through network pharmacology and in vitro experiments.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Aberrant upregulation of Periostin (POSTN) expression has been implicated in various disease-related pathological cascades, notably inflammatory responses, fibrotic processes and tumor progression, including non-small cell lung cancer (NSCLC). The present study aimed to elucidate the functional role and underlying mechanisms of POSTN in NSCLC. Immunohistochemical and Western blot analysis consistently revealed elevated POSTN levels in NSCLC tissues and cell lines.
View Article and Find Full Text PDFWound healing comprises a series of complex physiological processes, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Designing new functional biomaterials by biological macromolecules with tailored therapeutic effects to precisely match the unique requirements of each stage is cherished but rarely discussed. Here, we employ all-aqueous microfluidics to fabricate multifunctional core-shell microparticles aimed at promoting whole-stage wound healing.
View Article and Find Full Text PDFBackground: Accumulation of senescent cells in tissues and their downstream effect programs have emerged as key drivers of aging and age-associated pathologies. Recent progresses in senotherapeutics indicated that either selectively killing senescent cells with senolytics or suppressing the senescence-associated secretory phenotype (SASP) secretion using senomorphics contributes to extending of the healthy lifespan and alleviating numerous age-related disorders in mice.
Purpose: However, the potential side-effects and long-term cytotoxicity of the above novel compounds have not yet been determined.
This paper investigates the aeration and oxygen transfer characteristics within the aeration tank of an integrated wastewater treatment system (IWTS) using Computational Fluid Dynamics coupled with Population Balance Model and oxygen transfer model. The findings suggest that increasing the air flow rate significantly enhances the oxygen transfer rate, albeit at a decreasing rate of growth. The oxygen overall mass transfer coefficient is primarily influenced by the interfacial area per unit volume and to a lesser by the oxygen mass transfer coefficient (k).
View Article and Find Full Text PDFBackground: Histone deacetylase (HDAC) is a potential target for Colorectal Cancer (CRC) molecular target therapy, dehydroharmine derivative ZDLT-1 was designed to inhibit CRC cell proliferation by inhibiting HDAC target. This study aimed to explore the effect of ZDLT-1 could induce apoptosis in CRC in vitro and in vivo, and determine the mechanism of ZDLT-1.
Methods: First, MTT assay, colony formation, wound healing, Transwell assay, Hoechst33342 staining and Annexin V-FITC/PI double staining assay were used to investigate the in vitro effect of ZDLT-1.
Intracerebral hemorrhage has the characteristics of high morbidity, disability and mortality, which has caused a heavy burden to families and society. Microglia are resident immune cells in the central nervous system, and their activation plays a dual role in tissue damage after intracerebral hemorrhage. The damage in cerebral hemorrhage is embodied in the following aspects: releasing inflammatory factors and inflammatory mediators, triggering programmed cell death, producing glutamate induced excitotoxicity, and destroying blood-brain barrier; The protective effect is reflected in the phagocytosis and clearance of harmful substances by microglia, and the secretion of anti-inflammatory and neurotrophic factors.
View Article and Find Full Text PDFAtherosclerosis (AS) is a significant global health concern due to its high morbidity and mortality rates. Extensive efforts have been made to replicate the cardiovascular system and explore the pathogenesis, diagnosis, and treatment of AS. Microfluidics has emerged as a valuable technology for modeling the cardiovascular system and studying AS.
View Article and Find Full Text PDFTriboelectric nanogenerators (TENGs) have emerged as promising devices for generating self-powered therapeutic electrical stimulation over multiple aspects of wound healing. However, the challenge of achieving full 100% contact in conventional TENGs presents a substantial hurdle in the quest for higher current output, which is crucial for further improving healing efficacy. Here, a novel multifunctional wound healing system is presented by integrating the aqueous-aqueous triboelectric nanogenerators (A-A TENGs) with a functionalized conductive hydrogel, aimed at advancing infected wound therapy.
View Article and Find Full Text PDFAim: To compare the efficacy of pars plana vitrectomy (PPV) combined with internal limiting membrane (ILM) and silicone oil or sterile air tamponade for the treatment of myopic foveoschisis (MF) in highly myopic eyes.
Methods: This retrospective study included 48 myopic eyes of 40 patients with MF and axial lengths (ALs) ranging from 26-32 mm treated between January 2020 and January 2022. All patients were underwent PPV combined with ILM peeling followed by sterile air or silicone oil tamponade and followed up at least 12mo.
Abnormal mTORC1 activation by the lysosomal Ragulator complex has been implicated in cancer and glycolytic metabolism associated with drug resistance. Fasting upregulates RNF152 and mediates the metabolic status of cells. We report that RNF152 regulates mTORC1 signaling by targeting a Ragulator subunit, p18, and attenuates gemcitabine resistance in gallbladder cancer (GBC).
View Article and Find Full Text PDFIntegration of hydrogen evolution with the oxidation of organic substances in one electrochemical system is highly desirable. However, achieving selective oxidation of organic substances in the integrated system is still highly challenging. In this study, a phosphorylated NiMoO nanoneedle-like array was designed as the catalytic active electrode for the integration of highly selective electrochemical dehydrogenation of tetrahydroisoquinolines (THIQs) with hydrogen production.
View Article and Find Full Text PDFBioresour Bioprocess
April 2023
Currently, microbial manufacturing is widely used in various fields, such as food, medicine and energy, for its advantages of greenness and sustainable development. Process optimization is the committed step enabling the commercialization of microbial manufacturing products. However, the present optimization processes mainly rely on experience or trial-and-error method ignoring the intrinsic connection between cellular physiological requirement and production performance, so in many cases the productivity of microbial manufacturing could not been fully exploited at economically feasible cost.
View Article and Find Full Text PDFThe EP300-ZNF384 fusion gene is an oncogenic driver in B-cell acute lymphoblastic leukemia (B-ALL). In the present study, we demonstrated that EP300-ZNF384 substantially induces the transcription of IL3RA and the expression of IL3Rα (CD123) on B-ALL cell membranes. Interleukin 3 (IL-3) supplementation promotes the proliferation of EP300-ZNF348-positive B-ALL cells by activating STAT5.
View Article and Find Full Text PDF