Publications by authors named "Wensi Zhai"

Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment by prolonging overall survival of patients with cancer. Despite advances in the clinical setting, the immune cellular network in the tumor microenvironment (TME) that mediates such therapy is not well understood. IL33 is highly expressed in normal epithelial cells but downregulated in tumor cells in advanced carcinoma.

View Article and Find Full Text PDF

The immune checkpoint blockade (ICB) immunotherapy has prolonged overall survival for cancer patients but the response rates are low. The resistance to ICB is likely due to compensatory upregulation of additional immune inhibitory molecules. In this study, we first systematically examined Tim-3 expression in immune cells in mouse tumors and found that Tim-3 was specifically up-regulated in a large number of Treg, conventional CD4, CD8 T cells, dendritic cell 1 (DC1), and macrophage 1 (M1) in the tumor microenvironment (TME).

View Article and Find Full Text PDF

T cells are strongly regulated by oxidizing environments and amino acid restriction. How T cells reprogram metabolism to adapt to these extracellular stress situations is not well understood. Here, we show that oxidizing environments and amino acid starvation induce ATF4 in CD4 T cells.

View Article and Find Full Text PDF

Background/aims: The status of interferon (IFN) signaling pathway has been shown to be closely associated with the response of immune checkpoint blockade therapy against advanced human cancers. IFN-induced protein with tetratricopeptide repeats 2 (IFIT2), also known as IFN-stimulated gene 54 (ISG54), is one of the most highly responsive ISGs, which can inhibit the proliferation and migration of cancer cells, and regulate viral replication, resulting in anti-cancer and anti-viral effects. In the present study, we aimed to investigate the role of IFIT2 in human gastric cancer.

View Article and Find Full Text PDF

In this work, asbestos tailings were recycled and used as reinforcing fillers to enhance the mechanical properties of polypropylene (PP). A silane coupling agent was used to chemically modify the asbestos tailings to increase the compatibility between asbestos tailings and polypropylene matrix. Both raw and chemically treated asbestos tailings with different loading levels (from 3 to 30 wt%) were utilized to fabricate composites.

View Article and Find Full Text PDF