Ascorbic acid (AsA) serves as a key antioxidant involved in the various physiological processes and against diverse stresses in plants. Due to the insufficiency of AsA de novo biosynthesis, the AsA regeneration is essential to supplement low AsA synthesis rates. Redox reactions play a crucial role in response to biotic stress in plants; however, how AsA regeneration participates in hydrogen peroxide (HO) homeostasis and plant defense remains largely unknown.
View Article and Find Full Text PDFA fungal effector that is toxic to plant cells was identified in Verticillium dahliae. The effector contains a non-canonical Common in several Fungal Extracellular Membrane proteins (CFEM) domain, a tandem repeat region consisting of four 14-amino acid repeats rich in proline, and a C-terminal region, thus is designated V. dahliae tetrapeptide repeat protein (VdTRP).
View Article and Find Full Text PDFBackground And Aims: Acetaminophen (APAP) is the main cause of acute liver injury (ALI) in the Western. Our previous study has shown that fenofibrate activated hepatic expression of fibroblast growth factor 21 (FGF21) can protect the liver form APAP injuries by promoting autophagy. However, the underlying mechanism involved in FGF21-mediated autophagy remains unsolved.
View Article and Find Full Text PDFThe function-oriented synthesis of polyoxometalate (POM) nanoclusters has become an increasingly important area of research. Herein, the well-known broad-spectrum anticancer drug Ge-132 which contains Ge as potential heteroatoms and carboxyl coordination sites, is introduced to the POM system, leading to the first organogermanium functionalized Ge-Sb-templating POM nanocluster Na[HN(CH)] H[Sm(HO)WOGe(CHCHCOOH)][SbWO][Ge(CHCHCOOH) SbWO]·62HO (1). An unprecedented organogermanium templating Dawson-like [Ge(CHCHCOOH)SbWO] building block is discovered.
View Article and Find Full Text PDFBackground: The preoperative differential diagnosis of nodular lung adenocarcinoma has long been a challenging issue for thoracic surgeons. This study aimed to explore differential diagnosis of nodular lung adenocarcinoma by comprehensively analyzing its clinical, computed tomography (CT) imaging, and postoperative pathological and genetic features.
Methods: The clinical, CT imaging, and postoperative pathological features of different classifications of nodular lung adenocarcinoma were retrospectively analyzed through univariate and multivariate statistical methods.
Computational modeling of plasmon-mediated molecular photophysical and photochemical behaviors can help us better understand and tune the bound molecular properties and reactivity and make better decisions to design and control nanostructures. However, computational investigations of coupled plasmon-molecule systems are challenging due to the lack of accurate and efficient protocols to simulate these systems. Here, we present a hybrid scheme by combining the real-time time-dependent density functional theory (RT-TDDFT) approach with the time-domain frequency dependent fluctuating charge (TD-ωFQ) model.
View Article and Find Full Text PDFMembrane receptors perform a diverse range of cellular functions, accounting for more than half of all drug targets. The mechanical microenvironment regulates cell behaviors and phenotype. However, conventional analysis methods of membrane receptors often ignore the effects of the extracellular matrix stiffness, failing to reveal the heterogeneity of cell membrane receptors expression.
View Article and Find Full Text PDFIndustrializing water electrolyzers demands better electrocatalysts, especially for the anodic oxygen evolution reaction (OER). The prevailing OER catalysts are Ir or Ru-based nanomaterials, however, they still suffer from insufficient stability. An alternative yet considerably less explored approach is to upgrade Rh, a known stable but moderately active element for OER electrocatalysis, via rational structural engineering.
View Article and Find Full Text PDFTherapeutic drug monitoring (TDM) is an important tool in precision medicine as it allows estimating pharmacodynamic and pharmacokinetic effects of drugs in clinical settings. An accurate, fast and real-time determination of the drug concentrations in patients ensures fast decision-making processes at the bedside to optimize the clinical treatment. Surface-enhanced Raman spectroscopy (SERS), which is based on the application of metallic nanostructured substrates to amplify the inherent weak Raman signal, is a promising technique in medical research due to its molecular specificity and trace sensitivity accompanied with short detection times.
View Article and Find Full Text PDFMatrix metalloproteinase-9 (MMP-9), a proteolytic enzyme, degrades the extracellular matrix and plays a key role in cell communication. However, the real-time monitoring of cell-secreted MMP-9 during cell-cell communication remains a challenge. Herein, we developed a cell-based membrane-anchored surface-enhanced Raman scattering (SERS) biosensor using a Au@4-mercaptobenzonitrile (4-MBN) @Ag@peptide nanoprobe for the monitoring of cell-secreted MMP-9 during cell communication.
View Article and Find Full Text PDFPyrazinoic acid (POA) is a metabolite of the anti-tuberculosis drug pyrazinamide (PZA), and its detection can be used to assess the resistance of Mycobacterium tuberculosis in cultures, as only sensitive strains of the bacteria can metabolize PZA into POA. Prussian blue is a well-known metal-organic framework compound widely used in various sensing platforms such as electrochemical, photochemical, and magnetic sensors. In this study, we present a novel sensing platform based on Prussian blue-modified gold nanoparticles (AuNPs) designed to enhance the affinity of POA towards the sensing surface and to capture POA molecules from aqueous solutions.
View Article and Find Full Text PDFStrain engineering has been utilized as an effective approach to regulate the binding of reaction intermediates and modify catalytic behavior on noble metal nanocatalysts. However, the continuous, precise control of strain for a depiction of strain-activity correlation remains a challenge. Herein, Pd-based nanooctahedrons coated with two Ir overlayers are constructed, and subject to different postsynthetic treatments to alter the amount of H intercalated into Pd core for achieving three different surface strains (o-Pd/Ir-1.
View Article and Find Full Text PDFPlasma membrane represents a critical battleground between plants and attacking microbes. Necrosis-and-ethylene-inducing peptide 1 (Nep1)-like proteins (NLPs), cytolytic toxins produced by some bacterial, fungal and oomycete species, are able to target on lipid membranes by binding eudicot plant-specific sphingolipids (glycosylinositol phosphorylceramide) and form transient small pores, causing membrane leakage and subsequent cell death. NLP-producing phytopathogens are a big threat to agriculture worldwide.
View Article and Find Full Text PDFAdvancing electrocatalysts for alkaline hydrogen oxidation/evolution reaction (HOR/HER) is essential for anion exchange membrane-based devices. The state-of-the-art Pt-based electrocatalysts for alkaline HOR suffer from low intrinsic activities and severe CO poisoning due to the challenge of simultaneously optimizing surface adsorption toward different adsorbates. Herein, this challenge is overcome by tuning an atomic MoO layer with high oxophilicity onto PtMo nanoparticles (NPs) with optimized H , OH , and CO adsorption for boosting anti-CO-poisoning hydrogen-cycle electrocatalysis in alkaline media.
View Article and Find Full Text PDFThe aim of this study was to explore the regulating effects of hyperoside (Hyp) on lipid metabolism in high-fat diet mice. The high-fat diet mouse model was established by high-fat diet induction. After 5 weeks of Hyp intragastric administration in high-fat diet mice, the serum lipid levels before and after Hyp administration were measured by the corresponding kits.
View Article and Find Full Text PDFFront Cell Infect Microbiol
November 2022
Anti-infection strategies against pleural empyema include the use of antibiotics and drainage treatments, but bacterial eradication rates remain low. A major challenge is the formation of biofilms in the pleural cavity. DNase has antibiofilm efficacy , and intrapleural therapy with DNase is recommended to treat pleural empyema, but the relevant mechanisms remain limited.
View Article and Find Full Text PDFResearch on ion channels and their monoclonal antibodies plays a critical role in drug development and disease diagnosis. The current ion channel researches are often not conducted in the microenvironment for cells survival, which restricts the mechanism study of the links between the cell structure and the ion channel function. In this work, we synthesized gold core-4-mercaptobenzonitrile-sliver shell-goat anti-rabbit immunoglobulin G (Au@4-MBN@Ag@IgG) nanoparticles as surface-enhanced Raman scattering (SERS) nanoprobes for investigating the human ether-a-go-go related gene (hERG) potassium ion channel in cell membranes.
View Article and Find Full Text PDFThe number of MXene layers plays a crucial role in their performance when they are used as anode materials for sodium-ion batteries. Herein, Ti-based nitride MXenes with different layers, TiNOMXene (= 2, 3, 4) structures, were constructed to calculate the structural stability of their precursor, electronic properties after etching, and sodium storage behavior compared with the common TiCOand TiCOMXene. First-principles calculations indicate that nitride MXenes possess a better rate capability than carbide MXenes of the same thickness.
View Article and Find Full Text PDFModerate adsorption of oxygenated intermediates takes a significant role in rational design of high-efficiency oxygen reduction reaction (ORR) electrocatalysts. Long-serving as a reliable strategy to tune geometric structure of nanomaterials, defect engineering enjoys the great ability of adjusting the coordination environment of catalytic active sites, which enables dominant regulation of adsorption energy and kinetics of ORR catalysis. However, limited to controllable nanocrystals fabrication, inducing uniformly dispersed high-coordinated defects into ultrathin 2D nanosheets remains challenging.
View Article and Find Full Text PDFTheranostic nanoplatforms with accurate diagnosis and effective therapy show a bright prospect for tumor treatments. Herein, a novel boracic acid-modified graphite carbon nitride and Prussian blue nanohybrid (PB@B-g-CN) was developed, which provides sialic acid-targeted Raman recognition and synergistic photothermal/photodynamic therapy in the near-infrared region. Owing to the specific interaction between boracic acid and sialic acid and Raman response at 2157 cm of PB, the nanohybrids exhibit high specificity and Raman sensitivity for detection of the overexpressed sialic acid on tumor cells.
View Article and Find Full Text PDFThe condensate spill accident from the Sanchi oil tanker collision in the East China Sea is unique in world history. To date, the spilled and burnt amounts of condensate remain unknown. The present study demonstrates the chemical fingerprints of a surrogate condensate (SC) from the same source, and of the carried heavy fuel oil (HFO) of the Sanchi accident.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2022
Background And Objective: Colorectal cancer (CRC) is currently one of the main cancers world-wide, with a high incidence in the elderly. In the diagnosis of CRC, endorectal ultrasound plays an important role in judging benign and early malignant tumors. However, malignant tumors in the early-stage are not easy to identify visually and experts usually seek help from multi-view images, which increases the workload and also exists a certain probability of misdiagnosis.
View Article and Find Full Text PDFPsoralen ultraviolet A (PUVA) therapy has thrived as a promising treatment for psoriasis. However, overdose of PUVA treatment will cause side-effects, such as melanoma formation. And these side-effects are often ignored during PUVA therapy.
View Article and Find Full Text PDF