Background: Intestinal organoid has emerged as an energetic tool for modeling intestine physiology and relevant diseases in vitro. Here, we reported that development of intestinal organoids could be used to explore the toxicology mechanism for combination effects of low dose nanoplastic (NPs) chronic exposure and acute radiation on intestine injury, the two classical chemical and physical substances.
Methods: Integrated acute radiation-induced intestine injury model in vivo and mice intestinal organoids in vitro were conducted in this study.
Endogenous immune defenses provide an intrinsic barrier against external entity invasion. Microplastics in the environment, especially those at the nanoscale (nanoplastics or NPs), may pose latent health risks through direct exposure. While links between nanoplastics and inflammatory processes have been established, detailed insights into how they may perturb the innate immune mechanisms remain uncharted.
View Article and Find Full Text PDFNanoplastic particles are pervasive environmental contaminants with potential health risks, while mouse intestinal organoids provide accurate in vitro models for studying these interactions. Metabolomics, especially through LC-MS, enables detailed cellular response studies, and there's a novel interest in comparing metabolic changes across nanoparticle species using gut organoids. This study used a mouse intestinal organoid combined with cell model to explore the differences in metabolites and toxicity mechanisms induced by exposure to three nanoplastics (PS, PTFE, and PMMA).
View Article and Find Full Text PDFBackground: Per- and polyfluoroalkyl substances (PFAS) are widespread persistent organic pollutants (POPs) associated with diseases including osteoporosis, altered immune function and cancer. However, few studies have investigated the association between PFAS mixture exposure and Depression in general populations.
Methods: Nationally representative data from the National Health and Nutrition Examination Survey (NHANES) (2005-2018) were used to analyze the association between PFAS and Depression in U.
Nanoplastics have been widely studied as environmental pollutants, which can accumulate in the human body through the food chain or direct contact. Research has shown that nanoplastics can affect the immune system and mitochondrial function, but the underlying mechanisms are unclear. Lungs and macrophages have important immune and metabolic functions.
View Article and Find Full Text PDF