Degenerative cervical myelopathy (DCM) is the most common cause of nontraumatic spinal cord injury in adults worldwide. Surgical decompression is generally effective in improving neurological outcomes and halting progression of myelopathic deterioration. However, a subset of patients experience suboptimal neurological outcomes.
View Article and Find Full Text PDFCervical spondylotic myelopathy (CSM) is the commonest cause of spinal cord impairment worldwide and despite surgical treatment, it is commonly associated with chronic neuropathic pain and neurological impairment. Based on data suggesting a key role of sodium and glutamate mediated cellular injury in models of spinal cord compression, we examined whether riluzole, a sodium channel/glutamate blocker, could improve neurobehavioral outcomes in a rat model of CSM. To produce chronic progressive compression of the cervical spinal cord, we used an established model of graded mechanical cord compromise developed in our laboratory.
View Article and Find Full Text PDFCervical spondylotic myelopathy (CSM) is the most common form of spinal cord impairment in adults. However critical gaps in our knowledge of the pathobiology of this disease have limited therapeutic advances. To facilitate progress in the field of regenerative medicine for CSM, we have developed a unique, clinically relevant model of CSM in rats.
View Article and Find Full Text PDFCervical spondylotic myelopathy (CSM) is the most common cause of spinal cord dysfunction in adults in Western society. Paradoxically, relatively little is known about the pathobiological mechanisms associated with the progressive loss of neural tissue in the spinal cord of CSM patients. In this report we have utilized the twy/twy mutant mouse, which develops ossification of the ligamentum flavum at C2-C3 and exhibits progressive paralysis.
View Article and Find Full Text PDF