Background And Objective: Cone-beam computed tomography (CBCT) has become a more and more active cutting-edge topic in the international computed tomography (CT) research due to its advantages of fast scanning speed, high ray utilization rate and high precision. However, scatter artifacts affect the imaging performance of CBCT, which hinders its application seriously. Therefore, our study aimed to propose a novel algorithm for scatter artifacts suppression in thorax CBCT based on a feature fusion residual network (FFRN), where the contextual loss was introduced to adapt the unpaired datasets better.
View Article and Find Full Text PDFJ Appl Clin Med Phys
July 2016
The purpose of this study was to reduce cupping artifacts and improve quantitative accuracy of the images in cone-beam CT (CBCT). An energy minimization method (EMM) is proposed to reduce cupping artifacts in reconstructed image of the CBCT. The cupping artifacts are iteratively optimized by using efficient matrix computations, which are verified to be numerically stable by matrix analysis.
View Article and Find Full Text PDF