Unlabelled: The potential of CRISPR/Cas systems for nucleic acid detection in novel biosensing applications is remarkable. The current clinical diagnostic detection of () is based on serological identification, culture, and PCR. We report a rapid, simple, and sensitive method for detecting and screening for .
View Article and Find Full Text PDFHIV mutations occur frequently despite the substantial success of combination antiretroviral therapy, which significantly impairs HIV progression. Failure to develop specific vaccines, the occurrence of drug-resistant strains, and the high incidence of adverse effects due to combination antiviral therapy regimens call for novel and safer antivirals. Natural products are an important source of new anti-infective agents.
View Article and Find Full Text PDFSubsequently to the publication of the above article, and a Corrigendum that has already been published with the intention of showing corrected versions of Figs. 3 and 6 (DOI: 10.3892/ijo.
View Article and Find Full Text PDFThe Editor-in-Chief has retracted this article [1] because Figure 3a overlaps with Figure 2 in [2]. An investigation by Zhengzhou University has confirmed this. The data reported in this article are therefore unreliable.
View Article and Find Full Text PDFWorld J Gastroenterol
November 2019
Background: Studies have shown that long non-coding RNAs (lncRNAs) play a key role in almost all key physiological and pathological processes, including different types of malignant tumors. Our previous lncRNA microarray results have shown that lncRNA XLOC_001659 is upregulated in esophageal cancer (EC) tissues, with a fold change of 20.9 relative to normal esophageal tissues.
View Article and Find Full Text PDFThe Editor-in-Chief has retracted this article [1] because Figure 8 overlaps with Figure 6b of [2] and Figure 6 overlaps with Figure 3 of [3] and Figure 3 of [4].
View Article and Find Full Text PDFThe Editor-in-Chief has retracted this article [1] because Figure 6b overlaps with Figure 8 of [2] and Figure 4a overlaps with Figure 2b of [3].
View Article and Find Full Text PDFHuman DNA polymerase β (polβ) is a small, monomeric protein essential for short-patch base excision repair (BER). polβ plays an important role in the regulation of chemotherapy sensitivity in tumour cells. In this study, we determined that the expression levels of polβ mRNA and miR-149 in tumour tissues were significantly higher than in adjacent non-tumour tissues.
View Article and Find Full Text PDFAn interested reader drew to our attention that, in the above-mentioned article, there were two figures where identity in certain of the data was shared between panels within the same figure. First, in Fig. 3B, the data shown for the EC9706 cell line/negative control (NC) experiment were derived from the same original source as those for the EC-1/Blank control experiment.
View Article and Find Full Text PDFEsophageal cancer is a common malignant tumor worldwide. Inherent and acquired drug resistance are the major challenges faced in anticancer chemotherapy. This study aimed to explore the effects of α-solanine in regards to the chemosensitivity of esophageal cancer cells.
View Article and Find Full Text PDFSubsequently to the publication of this article, an interested reader drew to our attention the fact that the six panels shown in Fig. 6 shared several areas of identity among them. Following an internal investigation, a laboratory technician, who was responsible for editing the pictures, admitted that the data as presented in the figure had been manipulated after having mislaid some of the original data.
View Article and Find Full Text PDFThis article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal).
View Article and Find Full Text PDFBackground: Human DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy.
Methods: We evaluated the mutation of polβ in a larger cohort of esophageal cancer (EC) patients by RT-PCR and sequencing analysis.
α-solanine, a bioactive component and one of the major steroidal glycoalkaloids in potatoes, has been observed to inhibit growth and induce apoptosis in cancer cells. However, the antitumor efficacy of α-solanine on esophageal carcinoma has yet to be fully elucidated. In the present study, the antitumor efficacy of α-solanine against human esophageal carcinoma cells was investigated.
View Article and Find Full Text PDFBackground: Esophageal cancer (EC) is one of the most common malignant tumors in the world. Due to difficulties with performing the operation, most patients choose to have palliative treatment instead. Radiotherapy is one of the main palliative treatments of EC.
View Article and Find Full Text PDFIn this work, the in vitro experiments about biological mechanisms of curcumin were conducted using the gastric cancer cell lines SGC-7901 and BGC-823. After 24-h exposure to curcumin at the concentrations of 5, 10, 15, 20, and 40 μmol/L, two cells showed the decreased proliferation and increased apoptosis abilities. Real-time PCR, Cell Counting Kit-8 (CCK-8) assay, western blotting, and cell apoptosis assay were used to further study the underlying mechanisms of curcumin.
View Article and Find Full Text PDFRecently, the incidence of melanoma has been on the rise. Patients with distant metastasis share poor prognosis. Increasing studies have been conducted to clarify the molecular mechanisms as well as to investigate potential effective therapeutic targets in the development of melanoma.
View Article and Find Full Text PDFRecent studies have shown that long non-coding RNAs (lncRNAs) are involved in a variety of biological processes and diseases in humans, including cancer. Our study serves as the first comprehensive analysis of lncRNA TP73-AS1 in esophageal cancer. We utilized a lncRNA microarray to analyze the expression profile of lncRNAs in esophageal squamous cell carcinoma.
View Article and Find Full Text PDFmiR-186 has been demonstrated to have a significant role as a tumor suppressor in many types of cancers. Nevertheless, its biological function in esophageal squamous cell carcinoma (ESCC) remains unknown. In the present study, we found that the expression level of miR-186 was downregulated in ESCC in comparison with the adjacent normal tissues and was significantly associated with differentiation level, TNM stage, and lymph node metastasis of ESCC.
View Article and Find Full Text PDFDNA polymerase β (pol β) is a key enzyme in DNA base excision repair, and an important factor for maintaining genomic integrity and stability. Esophageal carcinoma (EC) patients who have been identified as carrying the K167I variant of pol β have been shown to have decreased life expectancy. However, it is unknown if the variant affects pol β's functions and/or how it contributes to the initiation and progression of cancer.
View Article and Find Full Text PDFBackground: Non-small cell lung cancer (NSCLC) is the largest histological subgroup of lung cancer and has increased in prevalence in China over the past 5 years. The 5-year survival rate has remained at 15-20 %, with a median survival of 8-12 months. The tumorigenesis and progression of NSCLC is orchestrated by numerous oncogene and anti-oncogene mutations and insights into microRNA function have increased our understanding of the process.
View Article and Find Full Text PDFHuman DNA polymerase β (polβ) is a small monomeric protein that is essential for short-patch base excision repair. It plays an important role in regulating the sensitivity of tumor cells to chemotherapy. We have previously identified a G to C point mutation at nucleotide 648 (G648C) of polβ in esophageal cancer (EC).
View Article and Find Full Text PDF