Publications by authors named "Wenqiang Tu"

Peptide design and drug development offer a promising solution for combating serious diseases or infections. In this study, using an AI-human negotiation approach, we have designed a class of minimal model peptides against tuberculosis (TB), among which K7W6 exhibits potent efficacy attributed to its assembly-induced function. Comprising lysine and tryptophan with an amphiphilic α-helical structure, the K7W6 sequence exhibits robust activity against various infectious bacteria causing TB (including clinically isolated and drug-resistant strains) both and .

View Article and Find Full Text PDF

Recent studies have demonstrated the crucial role of cholesterol (Chol) in regulating the mechanical properties and biological functions of cell membranes. Methyl-β-cyclodextrin (MeβCD) is commonly utilized to modulate the Chol content in cell membranes, but there remains a lack of a comprehensive understanding. In this study, using a range of different techniques, we find that the optimal ratio of MeβCD to Chol for complete removal of Chol from a phosphocholine (PC)/Chol mixed membrane with a 1:1 mol ratio is 4.

View Article and Find Full Text PDF

Lithium (Li)-metal batteries (LMBs) with high-voltage cathodes and limited Li-metal anodes are crucial to realizing high-energy storage. However, functional electrolytes that are compatible with both high-voltage cathodes and Li anodes are required for their developments. In this study, the use of a moderate-concentration LiPF and LiNO dual-salt electrolyte composed of ester and ether co-solvents (fluoroethylene carbonate/dimethoxyethane, FEC/DME), which forms a unique Li solvation with aggregated dual anions, that is, PF and NO , is proposed to stabilize high-voltage LMBs.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries (ASSLiMB) have been considered as one of the most promising next-generation high-energy storage systems that replace liquid organic electrolytes by solid-state electrolytes (SSE). Among many different types of SSE, NASICON-structured LiAl Ge(PO) (LAGP) shows high a ionic conductivity, high stability against moisture, and wide working electrochemical windows. However, it is unstable when it is in contact with molten Li, hence largely limiting its applications in ASSLiMB.

View Article and Find Full Text PDF

The capacity fading of layered lithium-rich oxide (LiMnNiCoO, LLO) cathodes greatly hinders their practical application in next generation lithium ion batteries. It has been demonstrated in this work that the slow capacity fading of a LLO/Li cell within 120 cycles is mainly caused by electrolyte oxidation and LLO phase transformation with Ni dissolution. After 120 cycles, the dissolution of Mn becomes worse than that of Ni, leading to structural destruction of the generated spinel phase structure of LLO and fast capacity fading.

View Article and Find Full Text PDF

A novel bi-component composite of porous self-assembled micro-/nanostructured NiMnO microellipsoids as high-performance anode electrocatalyst for microbial fuel cells (MFCs) is successfully synthesized via a simple coprecipitation reaction in microemulsion and calcination method in air atmosphere. The morphology and structural characterization indicate that the as-fabricated NiMnO product is consist of MnO and NiMnO (n(MnO: n(NiMnO) = 0.35: 0.

View Article and Find Full Text PDF

Early life stress is one of the major susceptible factors for stress-related pathologies like posttraumatic stress disorder (PTSD). Recent studies in rats suggest that rather than being overall unfavorable, early life stress may prepare the organism to perform optimally to stressful environments later in life. In this study, severely adverse early life stress was conducted by six consecutive hours of maternal separation (MS), from PND1 to PND21, and contextual fear conditioning model was used on PND90 to mimic the second stress in adulthood and the re-experiencing symptom of PTSD.

View Article and Find Full Text PDF

It is known that early life stress has profound effects in early developing hippocampus. Reelin is a large protein that regulates neuronal migration during embryonic development. The expression of reelin persists in brain, but its function is little known.

View Article and Find Full Text PDF