Cell surface engineering is a rapidly advancing field, pivotal for understanding cellular physiology and driving innovations in biomedical applications. In this regard, DNA nanotechnology offers unprecedented potential for precisely manipulating and functionalizing cell surfaces by virtue of its inherent programmability and versatile functionalities. Herein, this Perspective provides a comprehensive overview of emerging trends in DNA nanotechnology for cell surface engineering, focusing on key DNA nanostructure-based tools, their roles in regulating cellular physiological processes, and their biomedical applications.
View Article and Find Full Text PDFThe development of stable and high-performance stationary phases is essential for achieving high-resolution gas chromatographic (GC) isomer separation. This study demonstrated a simple and effective method for synthesizing a stable nano metal-organic framework (MOF) as an efficient stationary phase for GC separation. The introduction of weakly basic pyridine played a key role in modulating the generation rate of small crystal particles while inhibiting the aggregation of nanoparticles.
View Article and Find Full Text PDFElectron ptychography, recognized as an ideal technique for low-dose imaging, consistently achieves deep sub-angstrom resolution at electron doses of several thousand electrons per square angstrom (e/Å) or higher. Despite its proven efficacy, the application of electron ptychography at even lower doses-necessary for materials highly sensitive to electron beams-raises questions regarding its feasibility and the attainable resolution under such stringent conditions. Herein, we demonstrate the implementation of near-atomic-resolution ( ~ 2 Å) electron ptychography reconstruction at electron doses as low as ~100 e/Å, for metal-organic frameworks (MOFs), which are known for their extreme sensitivity.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
Optimizing the balance between thermodynamic interaction and kinetic diffusion is pivotal to obtaining high-performance gas chromatographic stationary phases. Here, three aluminum-based metal-organic frameworks featuring topology were chosen to achieve such balance by refined controlling the thermodynamic interactions toward analytes at angstrom level in a confined space. The CAU-10-H with the middle-sized channels (5.
View Article and Find Full Text PDFLentinan (LNT), a natural polysaccharide, has been reported to exhibit immunomodulatory effects in the intestine after oral administration. Herein, we aimed to investigate the lymphatic transport of LNT in Peyer's patches (PPs) by traceable fluorescent labeling and to explore whether/how LNT contacts related immune cells. Near-infrared imaging confirmed the absorption of LNT in the small intestinal segment and its accumulation within PPs after oral administration.
View Article and Find Full Text PDFBackground: Evaluating energy expenditure is important for establishing optimal goals for nutrition treatment. However, indirect calorimetry, the reference standard for measuring energy expenditure, is difficult to apply widely in clinical practice.
Objective: To test the consistency of bioelectrical impedance analysis (BIA) relative to indirect calorimetry for evaluating energy expenditure in critically ill patients.
Angew Chem Int Ed Engl
October 2024
The wrinkles are pervasive in ultrathin two-dimensional (2D) materials, but the regulation of wrinkles is rarely explored systematically. Here, we employed a series of carboxylic acids (from formic acid to octanoic acid) to control the wrinkles of Zr-BTB (BTB=1, 3, 5-(4-carboxylphenyl)-benzene) metal-organic framework (MOF) nanosheet. The wrinkles at the micrometer scale were observed with transmission electron microscopy.
View Article and Find Full Text PDFThe stationary phase is the heart of chromatographic separation technology and a critical contributor to the overall separation performance of a chromatographic separation technique. However, traditional silicon-based materials designed for this purpose usually feature complex preparation processes, suboptimal permeability, pronounced mass-transfer resistance, and limited pH-range compatibility. These limitations have spurred ongoing research efforts aimed at developing new chromatographic stationary phases characterized by higher separation efficiency, adaptable selectivity, and a broader scope of applicability.
View Article and Find Full Text PDFAs of December 2022, 2603 laboratory-identified Middle East respiratory syndrome coronavirus (MERS-CoV) infections and 935 associated deaths, with a mortality rate of 36%, had been reported to the World Health Organization (WHO). However, there are still no vaccines for MERS-CoV, which makes the prevention and control of MERS-CoV difficult. In this study, we generated two DNA vaccine candidates by integrating MERS-CoV Spike (S) gene into a replicating Vaccinia Tian Tan (VTT) vector.
View Article and Find Full Text PDFThe membrane-proximal external region (MPER) represents a highly conserved region of the Human Immunodeficiency Virus (HIV) envelope glycoprotein (env) targeted by several broadly neutralizing antibodies (bnAbs). In this study, we employed single genome amplification to amplify 34 full-length env sequences from the 2005 plasma sample of CBJC504, a chronic HIV-1 clade B infected individual. We identified three amino acid changes (N671S, D674N, and K677R) in the MPER.
View Article and Find Full Text PDFThe modulation of two-dimensional metal-organic framework (2-D MOF) nanosheet stacking is an effective means to improve the properties and promote the application of nanosheets in various fields. Here, we employed a series of alcohol guest molecules (MeOH, EtOH and PrOH) to modulate Zr-BTB (BTB = benzene-1,3,5-tribenzoate) nanosheets and to generate untwisted stacking. The distribution of stacking angles was statistically analyzed from high-angle annular dark-field (HAADF) and fast Fourier transform (FFT) images.
View Article and Find Full Text PDFIntroduction: Carbapenem-Resistant Enterobacteriaceae (CRE) has posed a significant threat to humans.The aim of this study was to investigate the molecular characteristics of -producing in a university-affiliated tertiary hospital.
Methods: Polymerase chain reaction (PCR) and BLAST+ software were used to detect the prevalence of in and .
In separation science, precise control and regulation of the MOF stationary phase are crucial for achieving a high separation performance. We supposed that increasing the mass transfer resistance of MOFs with excessive porosity to achieve a moderate mass transfer resistance of the analytes is the key to conducting the MOF stationary phase with a high resolution. Three-dimensional UiO-67 (UiO-67-3D) and two-dimensional UiO-67 (UiO-67-2D) were chosen to validate this strategy.
View Article and Find Full Text PDFThe precise modulation of nanosheet stacking modes introduces unforeseen properties and creates momentous applications but remains a challenge. Herein, we proposed a strategy using bipolar molecules as torque wrenches to control the stacking modes of 2-D Zr-1,3,5-(4-carboxylphenyl)-benzene metal-organic framework (2-D Zr-BTB MOF) nanosheets. The bipolar phenyl-alkanes, phenylmethane (P-C) and phenyl ethane (P-C), predominantly instigated the rotational stacking of Zr-BTB-P-C and Zr-BTB-P-C, displaying a wide angular distribution.
View Article and Find Full Text PDFMetal organic frameworks (MOFs) are assembled from metal ions or clusters and organic ligands. The high tunability of these components offers a solid structural foundation for achieving efficient gas chromatography (GC) separation. This review demonstrates that the design of high performance MOFs with suitable stationarity should consider both the thermodynamic interactions provided by these MOFs and the kinetic diffusion of analytes.
View Article and Find Full Text PDFThe recently prevalent variants of concerns (VOCs) of SARS-CoV-2 belong to Omicron variants which display increased transmissibility and evade from immune protection generated by vaccines and/or natural infections. Better immunization strategies should be explored to induce broader immune responses against evolving SARS-CoV-2 variants. Here, we used inactivated vaccines derived from ancestral (Wu), Delta (Del) and Omicron (Omi) strains to immunize mice with homologous booster (3 × Wu, 3 × Del and 3 × Omi) or heterologous sequential booster (Wu/Del/Omi and Omi/Wu/Del) to evaluate their responses against two pre-Omicron (Wu and Del) and four Omicron variants.
View Article and Find Full Text PDFTetraphenylethylene (TPE)-based ligands are appealing for constructing metal-organic frameworks (MOFs) with new functions and responsiveness. Here, we report a non-interpenetrated TPE-based scu Zr-MOF with anisotropic flexibility, that is, Zr-TCPE (HTCPE = 1,1,2,2-tetra(4-carboxylphenyl)ethylene), remaining two anisotropic pockets. The framework flexibility is further anisotropically rigidified by installing linkers individually at specific pockets.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
November 2023
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) increases early in body fluids during infection and has recently been identified as a direct inducer for lung injury. However, the signal mechanism of N-protein in the lung inflammatory response remains poorly understood. The goal of this study was to determine whether RAGE (receptor for advanced glycation endproducts) participated in N-protein-induced acute lung injury.
View Article and Find Full Text PDFIt had been shown that lentinan (LNT) was mainly distributed in the liver after intravenous administration. The study aimed to investigate the integrated metabolic processes and mechanisms of LNT in the liver, as these have not been thoroughly explored. In current work, 5-([4,6-dichlorotriazin-2-yl] amino) fluorescein and cyanine 7 were used to label LNT for tracking its metabolic behavior and mechanisms.
View Article and Find Full Text PDFThe membrane-proximal external region (MPER) is a promising HIV-1 vaccine target owing to its linear neutralizing epitopes and highly conserved amino acids. Here, we explored the neutralization sensitivity and investigated the MPER sequences in a chronic HIV-1 infected patient with neutralizing activity against the MPER. Using single-genome amplification (SGA), 50 full-length HIV-1 envelope glycoprotein () genes were isolated from the patient's plasma at two time points (2006 and 2009).
View Article and Find Full Text PDFLocal flexibility in a metal-organic framework is intriguing for reconstructing a microenvironment to distinguish different guest molecules by emphasizing their differences. Herein, guest-adaptive flexibility is observed in a metal-organic framework for efficiently discriminating aromatic isomers. Microcrystal electron diffraction directly reveals that the anthracene rings can rotate around the single bond with the adsorption of guest molecules.
View Article and Find Full Text PDFPeak broadening and peak tailing are common but rebarbative phenomena that always occur when using metal-organic frameworks (MOFs) as stationary phases. These phenomena result in diverse "low-performance" MOF stationary phases. Here, by adjusting the particle size of MOF stationary phases from microscale to nanoscale, we successfully enhance the separation abilities of these "low-performance" MOFs.
View Article and Find Full Text PDFThe β-Glucans widely exist in plants and edible fungi, and their diverse bioactivities and good physicochemical properties have been widely reported. In addition, β-glucan intravenous injections (such as lentinan and schizophyllan) have been clinically used as immunomodulators and antitumor polysaccharides. However, the pharmacokinetic studies of β-glucans only stay on the level of plasma concentration and biodistribution , and little is known about their metabolism and degradation , which severely limits the further application of β-glucans in the field of medicine and biomaterials.
View Article and Find Full Text PDFBackground: Infection of SARS-CoV-2 may cause acute respiratory syndrome. It has been reported that SARS-CoV-2 nucleocapsid protein (N-protein) presents early in body fluids during infection. The direct involvement of N-protein in lung injury is poorly understood.
View Article and Find Full Text PDF