With advancements in integrated space-air-ground global observation capabilities, the volume of remote sensing data is experiencing exponential growth. Traditional computing models can no longer meet the task processing demands brought about by the vast amounts of remote sensing data. As an important means of processing remote sensing data, distributed cluster computing's task scheduling directly impacts the completion time and the efficiency of computing resource utilization.
View Article and Find Full Text PDFSulfur-containing gases, such as HS and SO, play significant roles in a multitude of biological processes affecting human life and health. Precise and efficient detection of these gases is therefore crucial for advancing one's understanding of their biological roles and developing effective diagnostic strategies. Fluorescent sensing offers a highly sensitive and versatile approach for detecting these gases.
View Article and Find Full Text PDFMonitoring the particle size distribution (PSD) is crucial for controlling product quality during fluidized bed granulation. This paper proposed a rapid analytical method that quantifies the D10, D50, and D90 values using a Convolutional Block Attention Module-Convolutional Neural Network (CBAM-CNN) framework tailored for deep learning with near-infrared (NIR) spectroscopy. This innovative framework, which fuses CBAM with CNN, excels at extracting intricate features while prioritizing crucial ones, thereby facilitating the creation of a robust multi-output regression model.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
November 2023
The preparation of diclofenac sodium spheres by fluidized bed is a common production mode for the pharmaceutical preparations at present, but the critical material attributes in the production process is mostly analyzed off-line, which is time-consuming and laborious, and the analysis results lag behind. In this paper, the real-time in-line prediction of drug loading of diclofenac sodium and the release rate during the coating process was realized by using near infrared spectroscopy. For the best near infrared spectroscopy (NIRS) model of drug loading, R, R, RMSECV, RMSEP were 0.
View Article and Find Full Text PDFAccumulation of heavy metal ions, including copper ions (Cu), presents a serious threat to human health and to the environment. A substantial amount of research has focused on detecting such species in aqueous solutions. However, progress towards ultrasensitive and easy-to-use sensors for non-aqueous solutions is still limited.
View Article and Find Full Text PDFThe application of process analysis and control is essential to enhance process understanding and ensure output material quality. The present study focuses on the stability of the feedback control system for a fluidized bed granulation process. Two strategies of dynamic moisture control (DMC) and static moisture control (SMC) were established based on the in-line moisture value obtained from the near-infrared sensor and control algorithm.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
June 2022
Near-infrared spectroscopy (NIRS) is an excellent process analytical technology (PAT) tool for active pharmaceutical ingredient (API) quantification during fluidized granulation. Therefore, a portable near-infrared spectrometer combined with a new innovative method of extended iterative optimization technique (EIOT) was used to in-line monitor the API content uniformity during fluidized bed granulation. The principal component analysis (PCA) and partial least squares regression (PLSR) were also used to characterize and predict API concentration with changes from 75% to 125% of the label claim to prove the superiority of EIOT.
View Article and Find Full Text PDFThe spontaneous zwitterionic copolymerization (SZWIP) of 2-oxazolines and acrylic acid affords biocompatible but low molecular weight linear -acylated poly(amino ester)s (NPAEs). Here, we present a facile one-step approach to prepare functional higher molar mass cross-linked NPAEs using 2,2'-bis(2-oxazoline)s (BOx). In the absence of solvent, insoluble free-standing gels were formed from BOx with different length -alkyl bridging units, which when butylene-bridged BOx was used possessed an inherent green fluorescence, a behavior not previously observed for 2-oxazoline-based polymeric materials.
View Article and Find Full Text PDFThe extensive use of halomethanes (CHX, X = F, Cl, Br, I) as refrigerants, propellants, and pesticides has drawn serious concern due to their adverse biological and atmospheric impact. However, there are currently no portable rapid and accurate monitoring systems for their detection. This work introduces an approach for the selective and sensitive detection of halomethanes using photoluminescence spectral shifts in cesium lead halide perovskite nanocrystals.
View Article and Find Full Text PDFThe ligand assisted reprecipitation (LARP) technique is an accessible and facile method that can synthesize metal halide perovskite nanocrystals (PNCs) under ambient conditions. However, low product yields of less than 30% for LARP and its contemporary methods are indicative of highly inefficient reactions. In this work we apply the principles of green chemistry to the LARP technique for synthesizing CsPbBr3 PNCs and help address this issue.
View Article and Find Full Text PDFCsPbI perovskite nanocrystals are a promising optoelectronic material when stabilized in their cubic phase. While ongoing efforts have addressed this structural challenge through a variety of meta-stabilization approaches, the postsynthesis purification of these nanocrystal dispersions has remained a challenge. In this article, we undertake a detailed investigation into the chemical, optical, and structural changes that arise during purification of CsPbI nanocrystals.
View Article and Find Full Text PDFImproving the stability and tuning the optical properties of semiconducting perovskites are vital for their applications in advanced optoelectronic devices. We present a facile synthetic method for hybrid composites of perovskites and metal-organic frameworks (MOFs). A simple two-step solution-based method without organic surfactants was employed to make all-inorganic lead-halide perovskites (CsPbX; X = Cl, Br, I, or mixed halide compositions) form directly in the pores of MIL-101 MOF.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2018
Currently, the most efficient perovskite solar cells (PSCs) mainly use planar and mesoporous titanium dioxide (TiO) as an electron-transport layer (ETL). However, because of its intrinsic photocatalytic properties, TiO can decompose perovskite absorber and lead to poor stability under solar illumination (ultraviolet light). Herein, a simplified architectural ETL-free PSC with enhanced efficiency and outstanding photostability is produced by the facile deposition of a bathocuproine (BCP) interlayer.
View Article and Find Full Text PDFThe fluidized bed granulation and pellets coating technologies are widely used in pharmaceutical industry, because the particles made in a fluidized bed have good flowability, compressibility, and the coating thickness of pellets are homogeneous. With the popularization of process analytical technology (PAT), real-time analysis for critical quality attributes (CQA) was getting more attention. Near-infrared (NIR) spectroscopy, as a PAT tool, could realize the real-time monitoring and control during the granulating and coating processes, which could optimize the manufacturing processes.
View Article and Find Full Text PDFHigh-quality and millimeter-sized perovskite single crystals of CsPbBr and CsPbBr were prepared in organic solvents and studied for correlation between photocurrent generation and photoluminescence (PL) emission. The CsPbBr crystals, which have a 3D perovskite structure, showed a highly sensitive photoresponse and poor PL signal. In contrast, CsPbBr crystals, which have a 0D perovskite structure, exhibited more than 1 order of magnitude higher PL intensity than CsPbBr, which generated an ultralow photoresponse under illumination.
View Article and Find Full Text PDFUnlabelled: We report on the fabrication of PbS/CH3NH3PbI3 (=MAP) core/shell quantum dot (QD)-sensitized inorganic-organic heterojunction solar cells on top of mesoporous (mp) TiO2 electrodes with hole transporting polymers (P3HT and
Pedot: PSS). The PbS/MAP core/shell QDs were in situ-deposited by a modified successive ionic layer adsorption and reaction (SILAR) process using PbI2 and Na2S solutions with repeated spin-coating and subsequent dipping into CH3NH3I (=MAI) solution in the final stage. The resulting device showed much higher efficiency as compared to PbS QD-sensitized solar cells without a MAP shell layer, reaching an overall efficiency of 3.