Publications by authors named "Wenping Qiu"

We reported here on the fabrication and characterization of a smart titanium alloy bolt based on a high-frequency piezoelectric thin-film sensor. The thin-film sensor was directly deposited on a titanium alloy bolt head with radio frequency magnetron sputtering and characterized by a scanning electron microscope and an atomic force microscope. The ultrasonic characteristics of the smart bolt, which include a pure and broad frequency spectrum peaked at 14.

View Article and Find Full Text PDF

Plant viruses must move through plasmodesmata (PD) to complete their life cycles. For viruses in the Potyviridae family (potyvirids), three viral factors (P3N-PIPO, CI, and CP) and few host proteins are known to participate in this event. Nevertheless, not all the proteins engaging in the cell-to-cell movement of potyvirids have been discovered.

View Article and Find Full Text PDF

(GVCV) causes severe stunting and death of cultivated grapevines and is prevalent in native spp. and in the Midwest region of the United States. GVCV can be transmitted from wild to spp.

View Article and Find Full Text PDF

Grapevines ( spp.) host viruses belonging to 17 families. Virus-associated diseases are a constant challenge to grape production.

View Article and Find Full Text PDF

Grapevine vein clearing virus (GVCV) is associated with a vein-clearing and vine-decline disease. In this study, we surveyed wild Ampelopsis cordata from the Vitaceae family and found that 31% (35 of 113) of native A. cordata plants are infected with GVCV.

View Article and Find Full Text PDF

Viral small RNAs (vsRNAs) include viral small interfering RNAs (vsiRNAs) that are initiators and products of RNA silencing, and small RNAs that are derived from viral RNAs with function still unknown. Sequencing of vsRNAs allows assembling of viral genomes and revelation of viral population variations at genomic levels. Grapevine vein clearing virus (GVCV) is a new member of the family Caulimoviridae whose DNA genome is replicated by reverse transcription of pre-genomic RNA molecules.

View Article and Find Full Text PDF

Grapevine vein clearing virus (GVCV), a new member of the genus Badnavirus in the family Caulimoviridae, is associated with a vein clearing and vine decline disease that severely affects grape production and berry quality in commercial vineyards in the Midwest region of the United States. In this paper, the genetic and phenotypic characteristics of GVCV-VRU1 and GVCV-VRU2, two isolates from wild Vitis rupestris grapevines in their native habitat, are described. The GVCV-VRU1 genome is 7,755 bp long while the GVCV-VRU2 genome consists of 7,725 bp, both of which are different from the genome of the GVCV-CHA isolate (7,753 bp), which was originally discovered in the grape cultivar 'Chardonel'.

View Article and Find Full Text PDF

The most economically important disease of cultivated grapevines worldwide is powdery mildew (PM) caused by the ascomycete fungus Erysiphe necator. The majority of grapevine cultivars used for wine, table grape, and dried fruit production are derived from the Eurasian grape species Vitis vinifera because of its superior aroma and flavor characteristics. However, this species has little genetic resistance against E.

View Article and Find Full Text PDF

The molecular interactions between grapevine and the obligate biotrophic fungus Erysiphe necator are not understood in depth. One reason for this is the recalcitrance of grapevine to genetic modifications. Using defense-related Arabidopsis mutants that are susceptible to pathogens, we were able to analyze key components in grapevine defense responses.

View Article and Find Full Text PDF

Grapevine vein clearing virus (GVCV) is a new badnavirus in the family Caulimoviridae that is closely associated with an emerging vein-clearing and vine decline disease in the Midwest region of the United States. It has a circular, double-stranded DNA genome of 7,753 bp that is predicted to encode three open reading frames (ORFs) on the plus-strand DNA. The largest ORF encodes a polyprotein that contains domains for a reverse transcriptase (RT), an RNase H, and a DNA-binding zinc-finger protein (ZF).

View Article and Find Full Text PDF

Stilbenic compounds are natural phytoalexins that have antimicrobial activities in plant defense against pathogens. Stilbene synthase (STS) is the key enzyme that catalyzes the biosynthesis of stilbenic compounds. Grapevine genome contains a family of preliminarily annotated 35 STS genes, the regulation of each STS gene needs to be studied to define their roles.

View Article and Find Full Text PDF

Grapevine is one of the economically and culturally important perennial fruit crops. More than 60 viruses infect grapevines and adversely affect their growth and development. Latent infection of most viruses in grapevines leads to chronic modulation of gene expression at transcriptional and post-transcriptional levels.

View Article and Find Full Text PDF

Small RNAs (sRNAs) have emerged as one of the most important regulators of gene expression in eukaryotes. sRNAs are intermediate molecules as well as end products in the antiviral defense pathway called RNA interference in plants and animals. Profiling of sRNAs using next-generation sequencing technologies has identified a number of plant viruses that have never been reported previously, and has provided a deeper view of virus populations in a plant that cannot be achieved by conventional methods like PCR and ELISA.

View Article and Find Full Text PDF

A severe vein-clearing and vine decline syndrome has emerged on grapevines (Vitis vinifera) and hybrid grape cultivars in the Midwest region of the United States. The typical symptoms are translucent vein-clearing on young leaves, short internodes and decline of vine vigor. Known viral pathogens of grapevines were not closely associated with the syndrome.

View Article and Find Full Text PDF

Background: The complex and dynamic changes during grape berry development have been studied in Vitis vinifera, but little is known about these processes in other Vitis species. The grape variety 'Norton', with a major portion of its genome derived from Vitis aestivalis, maintains high levels of malic acid and phenolic acids in the ripening berries in comparison with V. vinifera varieties such as Cabernet Sauvignon.

View Article and Find Full Text PDF

A comparative analysis of differentially expressed proteins in a susceptible grapevine (Vitis vinifera 'Cabernet Sauvignon') during the infection of Erysiphe necator, the causal pathogen of grapevine powdery mildew (PM), was conducted using iTRAQ. The quantitative labeling analysis revealed 63 proteins that significantly changed in abundance at 24, 36, 48, and 72 h post inoculation with powdery mildew conidiospores. The functional classification of the PM-responsive proteins showed that they are involved in photosynthesis, metabolism, disease/defense, protein destination, and protein synthesis.

View Article and Find Full Text PDF

Vitis vinifera (grapevine) is the most economically important deciduous fruit crop, but cultivated grapevine varieties lack adequate innate immunity to a range of devastating diseases. To identify genetic resources for grapevine innate immunity and understand pathogen defense pathways in a woody perennial plant, we focus in this study on orthologs of the central Arabidopsis thaliana defense regulator ENHANCED DISEASE SUSCEPTIBILITY1 (EDS1). The family of EDS1-like genes is expanded in grapevine, and members of this family were previously found to be constitutively upregulated in the resistant variety 'Norton' of the North American grapevine species Vitis aestivalis, while they were induced by Erysiphe necator, the causal agent of grapevine powdery mildew (PM), in the susceptible V.

View Article and Find Full Text PDF

Powdery mildews (Erysiphales) are obligate biotrophic pathogens that invade susceptible plant cells without triggering cell death. This suggests a highly adept mechanism of parasitism which enables powdery mildews to avoid detection or evade defenses by their host. To better understand this plant-pathogen interaction, we employed suppression subtractive hybridization (SSH), differential hybridization and quantitative real-time (qRT) PCR for the identification of grapevine (Vitis vinifera L.

View Article and Find Full Text PDF

This unit describes principles and protocols for expressing a gene of interest in plant cells using gene vectors that are derived from an infectious full-length cDNA plasmid of the tomato bushy stunt virus (TBSV) genomic RNA, and from defective interfering RNAs (DIs). The TBSV gene vector system permits convenient cloning, allows modification and abundant expression of the gene of interest, and facilitates biosecure containment of the gene vectors. These vectors can be employed for functional genomics studies and for analyzing the biochemical properties and subcellular distribution of expressed RNAs and/or their cognate proteins.

View Article and Find Full Text PDF

Grapevines exhibit a wide spectrum of resistance to the powdery mildew fungus (PM), Erysiphe necator (Schw.) Burr., but little is known about the transcriptional basis of the defense to PM.

View Article and Find Full Text PDF

Recombinant plant viruses have the propensity to remove foreign inserts during replication. This process is virus-specific and occurs in a host-dependent manner. In the present study, we investigated the integrity of foreign inserts in recombinant plant viruses using a model system consisting of Tomato bushy stunt virus (TBSV) and its defective interfering RNA (DI).

View Article and Find Full Text PDF

The P6 protein of Cauliflower mosaic virus (CaMV) W260 elicits a hypersensitive response (HR) on inoculated leaves of Nicotiana edwardsonii. This defense response, common to many plant pathogens, has two key characteristics, cell death within the initially infected tissues and restriction of the pathogen to this area. We present evidence that a plant gene designated CCD1, originally identified in N.

View Article and Find Full Text PDF

The capsid protein (CP) of satellite panicum mosaic virus (SPMV) has been implicated as a pathogenicity factor, inducing severe chlorosis on millet plants co-infected with SPMV and its helper virus, Panicum mosaic virus (PMV). In this study, we tested the effects of SPMV CP on Nicotiana benthamiana, a plant that does not support PMV+SPMV infections. SPMV CP expressed from a Potato virus X (PVX) gene vector elicited necrotic lesions on N.

View Article and Find Full Text PDF

Virus induced gene silencing (VIGS) and suppression are RNA-specific defense and counter-defense circuits in plant-virus interactions. These phenomena have been investigated extensively with an Agrobacterium-mediated transient expression system. In this study, a virus-based transient expression system was developed to study these phenomena.

View Article and Find Full Text PDF

The p19 protein (P19) of Tomato bushy stunt virus (TBSV) is a pathogenicity determinant with host-dependent effects on virus spread and symptom induction. In addition, results in this study confirm that Potato virus X-mediated delivery of P19 suppresses posttranscriptional gene silencing (PTGS). To study the relevance of this activity for TBSV biology, we evaluated whether TBSV activates virus-induced gene silencing (VIGS) and if this process is suppressed by P19.

View Article and Find Full Text PDF