Publications by authors named "Wenping Hu"

In this work, an Eu coordination polymer () was synthesized by a single-crystal-to-single-crystal transformation based upon complex under the stimulation of water molecules ({[Eu(bpdc)(HO)]·4HO} (), {[Eu(bpdc)(HO)]·5HO} (), and Hbpdc = 2,2'-bipyridine-3,3'-dicarboxylic acid ligand). Complex exhibited considerable pH fluorescence stability in an aqueous solution. Notably, the experiment showed that complex achieved high selectivity and sensitivity for the detection of the notorious food additive melamine (MEL) through a significant fluorescence enhancement response; and yet complex had no fluorescent response with MEL.

View Article and Find Full Text PDF

Owing to its green energy and hydrogen sources, electrocatalytic semi-hydrogenation of alkynes is an attractive alternative for industrial alkene production. However, its broad application is hindered by low selectivity and low Faradaic efficiency (FE) due to side reactions like over-hydrogenation to alkanes. Here, we demonstrate that atomically precise Ag(MHA) nanoclusters (NCs) can electrocatalyze alkyne semi-hydrogenation with 98 % conversion, 99 % selectivity, and 85 % FE, in a broad substrate pool.

View Article and Find Full Text PDF

Exciton effects caused by the inherent dielectric confinement in the 2D material carbon nitride (CN) severely limit the transfer of photogenerated carriers and the selective generation of free radicals. Herein, a homo-hetero double junction coupling strategy is reported to address these challenges. Ternary homojunction carbon nitride (HCCN) functionalized with cyano and cyanamide groups is constructed with a built-in electric field that efficiently separates the electron-hole into different structural units, thereby reducing reverse charge recombination and weakening exciton effects.

View Article and Find Full Text PDF

Creating chirality in achiral graphene and other two-dimensional materials has attracted broad scientific interest due to their potential application in advanced optics, electronics and spintronics. However, investigations into their optical activities and related chiro-electronic properties are constrained by experimental challenges, particularly in the precise control over the chirality of these materials. Here a universal wax-aided immersion method is developed to yield graphene rolls with controllable chiral angles, and the method can be generalized in other two-dimensional materials for high-yield fabrication.

View Article and Find Full Text PDF

Narrowband response of organic semiconductors determines the band selectivity and anti-interference of the organic photodetectors, which are pursued for a long time but have not yet been resolved in the UV band. Herein, a feasible strategy is developed to realize narrowband UV response by tuning the absorption state and intermolecular potential of organic semiconductors. The as-designed non-Donor-Acceptor molecule, 2,5-diphenylthieno[3,2-b]thiophene (2,5-DPTT), exhibits narrowband absorption by fully suppressing the charge transfer state absorption.

View Article and Find Full Text PDF

Developing purely organic room-temperature magnetic semiconductors has been a long-sought goal in the material community toward the simultaneous control of spin and charge. Organic cocrystals, known for their structural versatility and multifunctionality, are ideal candidates for these magnetoelectric coupling applications. However, organic room-temperature magnetic semiconductor cocrystals have rarely been reported, and their mechanisms remain poorly understood due to the complexity of cocrystal structures.

View Article and Find Full Text PDF

Nanomaterials that engage in well-defined and tunable interactions with proteins are pivotal for the development of advanced applications. Achieving a precise molecular-level understanding of nano-bio interactions is essential for establishing these interactions. However, such an understanding remains challenging and elusive.

View Article and Find Full Text PDF

High mobility emissive organic semiconductors (HMEOSCs) are a kind of unique semiconducting material that simultaneously integrates high charge carrier mobility and strong emission features, which are not only crucial for overcoming the performance bottlenecks of current organic optoelectronic devices but also important for constructing high-density integrated devices/circuits for potential smart display technologies and electrically pumped organic lasers. However, the development of HMEOSCs is facing great challenges due to the mutually exclusive requirements of molecular structures and packing modes between high charge carrier mobility and strong solid-state emission. Encouragingly, considerable advances on HMEOSCs have been made with continuous efforts, and the successful integration of these two properties within individual organic semiconductors currently presents a promising research direction in organic electronics.

View Article and Find Full Text PDF

Mimicking the superstructures and properties of spherical biological encapsulants such as viral capsids and ferritin offers viable pathways to understand their chiral assemblies and functional roles in living systems. However, stereospecific assembly of artificial polyhedra with mechanical properties and guest-binding attributes akin to biological encapsulants remains a formidable challenge. Here we report the stereospecific assembly of dynamic supramolecular snub cubes from 12 helical macrocycles, which are held together by 144 weak C-H hydrogen bonds.

View Article and Find Full Text PDF

Topological design of π electrons in zigzag-edged graphene nanoribbons (ZGNRs) leads to a wealth of magnetic quantum phenomena and exotic quantum phases. Symmetric ZGNRs typically show antiferromagnetically coupled spin-ordered edge states. Eliminating cross-edge magnetic coupling in ZGNRs not only enables the realization of a class of ferromagnetic quantum spin chains, enabling the exploration of quantum spin physics and entanglement of multiple qubits in the one-dimensional limit, but also establishes a long-sought-after carbon-based ferromagnetic transport channel, pivotal for ultimate scaling of GNR-based quantum electronics.

View Article and Find Full Text PDF

The objective of this study is to evaluate the impact of low blood lead levels (BLLs) on the red blood cell folate concentrations in U.S. children aged 2-17 years.

View Article and Find Full Text PDF
Article Synopsis
  • The biphasic system offers a unique approach for complex catalytic processes by combining photocatalysis with hydrogenation, highlighting both its potential and accompanying challenges.
  • Researchers utilized metal-organic frameworks (MOFs) and CdS nanorods to create a dual-layer Pickering emulsion that effectively separates the photocatalytic hydrogen evolution reaction (HER) in the aqueous phase from oil-soluble hydrogenation.
  • This innovative setup achieved an impressive hydrogenation yield of 187.37 mmol·g-1·h-1 and a high apparent quantum yield of 43.24%, demonstrating significant improvements over traditional methods and providing valuable insights for future tandem catalytic processes.
View Article and Find Full Text PDF

Crystal symmetry, which governs the local atomic coordination and bonding environment, is one of the paramount constituents that intrinsically dictate materials' functionalities. However, engineering crystal symmetry is not straightforward due to the isotropically strong covalent/ionic bonds in crystals. Layered two-dimensional materials offer an ideal platform for crystal engineering because of the ease of interlayer symmetry operations.

View Article and Find Full Text PDF

Organic semiconductor single crystals (OSSCs), which possess the inherent merits of long-range order, low defect density, high mobility, structural tunability and good flexibility, have garnered significant attention in the organic optoelectronic community. Past decades have witnessed the explosive growth of OSSCs. Despite numerous conceptual demonstrations, OSSCs remain in the early stages of implementation for applications that require high integration and multifunctionality.

View Article and Find Full Text PDF

2D materials are promising candidates for beyond-Si electronic devices. However, their stability is a key bottleneck in their industrial applications. The instability of 2D materials is mainly attributed to their intrinsic susceptibility to O and HO-particularly to reactive oxygen species (ROS), which have strong oxidizing properties.

View Article and Find Full Text PDF

The surface passivation with the heterostructure of the 2D/3D stack has been widely used for boosting the efficiency of n-i-p perovskite solar cells (PSCs). However, the disordered quantum well width distribution of 2D perovskites leads to energy landscape inhomogeneity and crystalline instability, which limits the further development of n-i-p PSCs. Here, a versatile approach, ligand-mediated surface passivation, was developed to produce a phase-pure 2D perovskite passivation layer with a homogeneous energy landscape by dual-ligand codeposition.

View Article and Find Full Text PDF

Ambipolar transport is crucial for constructing high performance organic light-emitting transistors (OLETs), but the ambipolar feature is usually not exhibited due to ineffective electron injection especially in symmetric device geometry. Herein, we show that electron injection could be greatly enhanced through the judicious design of an organic interface layer of 3,7-di(2-naphthyl)dibenzothiophene ,-dioxide (DNaDBSO) which shows an interfacial dipole effect upon contact with a metal electrode, especially an Au electrode. When incorporating a DNaDBSO film beneath Au electrodes, the electron injection and mobility were significantly enhanced in 2,6-diphenylanthracene-based OLETs, and thus ambipolar transport (maxh: 2.

View Article and Find Full Text PDF

2D nonlayered materials (NLMs) have garnered considerable attention due to unique surface structure and bright application prospect. However, owing to the strong interatomic forces caused by intrinsic isotropic chemical bonds in all directions, the direct synthesis of ultrathin and large area 2D NLMs remains a tremendous challenge. Here, the surface-assisted passivation growth strategy is designed to synthesize ultrathin and large size β-BiO crystals with the thickness down to 0.

View Article and Find Full Text PDF

Organic semiconductor single crystals (OSSCs) have garnered considerable attention because of their high charge mobility and atomic-scale smooth surface. However, their large-size high-quality preparation remains challenging due to the inevitable defects and limited growth speed brought by traditional epitaxial growth. Here, we demonstrate a space-confined strategy, named out-of-plane microspacing in-air sublimation (OPMAS), for growing vertically millimeter-sized OSSCs in several minutes by revolutionizing the heterogeneous epitaxial growth mode severely depending on substrates into a spontaneous homogeneous growth mode free from substrates.

View Article and Find Full Text PDF

Organic semiconductors, characterized by their exceptionally long spin relaxation times (≈ms) and unique spinterface effects, are considered game-changers in spintronics. However, achieving high-performance and wide-range tunable magnetoresistance (MR) in organic spintronic devices remains challenging, severely limiting the development of organic spintronics. This work combines straintronic multiferroic heterostructures with organic spin valve (OSV) to develop a three-terminal OSV device with a gate structure.

View Article and Find Full Text PDF

Organic nonvolatile memory has been considered a low-cost memory technology for flexible electronics and Internet-of-things (IoT). However, a major concern is the nonuniformity of memory units, which is primarily caused by random grain boundaries, interface defects, and charge traps, making it difficult to develop high-density reliable memory arrays. This nonuniformity problem would induce read error, which is directly caused by the narrow distribution margin of memory states and low noise tolerance in conventional organic memory cells.

View Article and Find Full Text PDF

The development of high mobility emissive organic semiconductors is significant for advancing optoelectronic devices with simplified architecture and enhanced performance. The herringbone-packed structure is regarded as the ideal arrangement for simultaneously achieving high mobility and strong emission in organic semiconductors. However, it remains a great challenge that the relationship between molecular structure and optoelectronic property is still elusive.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the engineering and fabrication of two-dimensional transition-metal dichalcogenides (TMDs), highlighting the challenges in achieving controlled stacking orders and nucleation sites for these materials.
  • An optimized chemical vapor deposition method is presented, allowing the modulation of MoS single crystals from monolayer to multilayer configurations, which enhances their properties significantly.
  • The research demonstrates that phototransistors made from monolayer MoS exhibit exceptional sensitivity and performance, and it explores the use of polarized Raman spectroscopy to understand interlayer interactions, paving the way for advanced optoelectronic applications.
View Article and Find Full Text PDF

As a key component for wearable electronics, intrinsically stretchable and healable semiconducting polymers are scarce because carrier mobility is often reduced with increasing stretchability and self-healability. Here, we combine stepwise polymerization and thermal conversion to introduce in situ continuous hydrogen bonding sites in a polymer backbone without breaking the conjugation or introducing bulky softer side chains, benefiting the intrachain and interchain charge transport. We demonstrate that a regular sequence structure facilitated the formation of big nanofibers with a high degree of aggregation, providing the loose and porous thin film with simultaneously improved charge transport, stretchability, and self-healability.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session72a0vq3t067tb2qjmdu8p16aeu351ses): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once