Publications by authors named "Wenpei Fan"

Macrophages are ubiquitous within the human body and serve pivotal roles in immune surveillance, inflammation, and tissue homeostasis. Phenotypic plasticity is a hallmark of macrophages, allowing their polarization into distinct phenotypes M1 (pro-inflammatory, anti-tumor) and M2 (anti-inflammatory, pro-tumor) in response to local microenvironmental cues. In tumor tissues, the polarization of tumor-associated macrophages profoundly shapes the tumor microenvironment, influencing tumor progression, immune evasion, and metastasis.

View Article and Find Full Text PDF
Article Synopsis
  • * Incorporating organic moieties into these nanoparticles creates mesoporous organosilica nanoparticles (MONs), which provide better biocompatibility, stimuli-responsive properties, and improved therapeutic effects.
  • * Recent research has concentrated on hollow-structured MONs (HMONs), particularly smaller sub-50 nm variants, which show advantages in drug delivery, but the synthesis and structural regulation of these small HMONs remain poorly understood.
View Article and Find Full Text PDF

Accurate imaging and precise treatment are critical to controlling the progression of pancreatic cancer. However, current approaches for pancreatic cancer theranostics suffer from limitations in tumor specificity and invasive surgery. Herein, a pancreatic cancer-specific phototheranostic modulator (AuHQ) dominated by aggregation-induced emission (AIE) luminogens-tethered gold nanoparticles is meticulously designed to facilitate prominent fluorescence-photoacoustic bimodal imaging-guided photothermal immunotherapy.

View Article and Find Full Text PDF

Sonodynamic therapy (SDT) is gaining popularity in cancer treatment due to its superior controllability and high tissue permeability. Nonetheless, the efficacy of SDT is severely diminished by the transient generation of limited reactive oxygen species (ROS). Herein, we introduce an acid-activated nanosonosensitizer, CaO@PCN, by the controllable coating of porphyrinic metal-organic frameworks (PCN-224) on CaO to induce cascaded oxidative stress in tumors.

View Article and Find Full Text PDF

Pathogen-host competition for manganese and intricate immunostimulatory pathways severely attenuates the efficacy of antibacterial immunotherapy against biofilm infections associated with orthopaedic implants. Herein, we introduce a spatiotemporal sono-metalloimmunotherapy (SMIT) strategy aimed at efficient biofilm ablation by custom design of ingenious biomimetic metal-organic framework (PCN-224)-coated MnO-hydrangea nanoparticles (MnPM) as a metalloantibiotic. Upon reaching the acidic HO-enriched biofilm microenvironment, MnPM can convert abundant HO into oxygen, which is conducive to significantly enhancing the efficacy of ultrasound (US)-triggered sonodynamic therapy (SDT), thereby exposing bacteria-associated antigens (BAAs).

View Article and Find Full Text PDF

High Epidermal growth factor receptor (EGFR) in Cutaneous Squamous Cell Carcinoma (cSCC) is associated with poor prognosis and advanced metastatic stages, severely impeding the efficacy of EGFR-targeting immunotherapy. This is commonly attributed to the combinatory outcomes of hypoxic tumor microenvironment (TME) and immunosuppressive effector cells together. Herein, a novel paradigm of EGFR-targeting oxygen-saturated nanophotosensitizers, designated as CHPFN-O, has been specifically tailored to mitigate tumor hypoxia in EGFR-positive cSCC and achieve Cetuximab (CTX)-mediated immunotherapy (CIT).

View Article and Find Full Text PDF

The activation of cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) has been recognized as one of the most promising immunotherapeutic strategies to induce innate antitumor immune responses. However, it is far from effective to just activate the cGAS-STING pathway, owing to abundant immunosuppressive cells that infiltrate the tumor microenvironment (TME) to impair antitumor immunity. Here, we present the smart design of biodegradable Mn-doped mesoporous silica (MM) nanoparticles with metal-organic framework (MOF) gating and hyaluronic acid (HA)-modified erythrocyte membrane (eM) camouflaging to coload cisplatin (CDDP) and SR-717 (a STING agonist) for long-circulating tumor-tropism synergistic chemo-metalloimmunotherapy by cascade cGAS-STING activation.

View Article and Find Full Text PDF

Ascorbic acid (AA) has been attracting great attention with its emerging potential in T cell-dependent antitumor immunity. However, premature blood clearance and immunologically "cold" tumors severely compromise its immunotherapeutic outcomes. As such, the reversal of the immunosuppressive tumor microenvironment (TME) has been the premise for improving the effectiveness of AA-based immunotherapy, which hinges upon advanced AA delivery and amplified immune-activating strategies.

View Article and Find Full Text PDF

Metastasis causes greater than 90% of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of cancer due to its high heterogeneity and widespread dissemination to various organs. Therefore, it is imperative to combat cancer metastasis, which is the key to achieving complete cancer eradication. Immunotherapy as a systemic approach has shown promising potential to combat metastasis.

View Article and Find Full Text PDF

Long-term tumor starvation may be a potential strategy to elevate the antitumor immune response by depriving nutrients. However, combining long-term starvation therapy with immunotherapy often yields limited efficacy due to the blockage of immune cell migration pathways. Herein, an intelligent blood flow regulator (BFR) is first established through photoactivated formation of the extravascular dynamic hydrogel to compress blood vessels, which can induce long-term tumor starvation to elicit metabolic stress in tumor cells without affecting immune cell migration pathways.

View Article and Find Full Text PDF

Chemotherapy is crucial in oncology for combating malignant tumors but often encounters obatacles such as severe adverse effects, drug resistance, and biocompatibility issues. The advantages of degradable silica nanoparticles in tumor diagnosis and treatment lie in their ability to target drug delivery, minimizing toxicity to normal tissues while enhancing therapeutic efficacy. Moreover, their responsiveness to both endogenous and exogenous stimuli opens up new possibilities for integrating multiple treatment modalities.

View Article and Find Full Text PDF

Nanomedicine-enhanced immunogenic cell death (ICD) has attracted considerable attention for its great potential in cancer treatment. Even though polyethylene glycol (PEG) is widely recognized as the gold standard for surface modification of nanomedicines, some shortcomings associated with this PEGylation, such as hindered cell endocytosis and accelerated blood clearance phenomenon, have been revealed in recent years. Notably, polysarcosine (PSar) as a highly biocompatible polymer can be finely synthesized by mild ring-opening polymerization (ROP) of sarcosine -carboxyanhydrides (Sar-NCAs) and exhibit great potential as an alternative to PEG.

View Article and Find Full Text PDF

Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability.

View Article and Find Full Text PDF

Biofilm-related infections (BRIs) present significant challenges owing to drug resistance, adverse immune responses, and implant failure; however, current approaches inadequately cater to the diverse therapeutic requirements at different stages of infection. To address this issue, a multi-immunotherapy strategy in combination with sonodynamic therapy is proposed for the chronological treatment of BRIs. Macrophage membrane-decorated targeting sonosensitive nanoadjuvants are fabricated to load cytosine-phosphate-guanine oligodeoxynucleotide (CPG-ODN) or microRNA (miR)-21-5p.

View Article and Find Full Text PDF

Nitric oxide (NO) is a promising approach for treating ocular hypertension and glaucoma. However, its clinical application is limited by its uncontrollable release and the unwanted overproduction of peroxynitrite. Herein, a denitrifying hollow mesoporous organosilica nanoparticle (HMMN) with framework cohybridization is first constructed to encapsulate -nitroso--acetyl-d,l-penicillamine (SNAP) to produce SNAP@HMMN with dual capacities of selective peroxynitrite removal and controllable NO release.

View Article and Find Full Text PDF

The therapeutic value of microRNA (miRNA) for the treatment of glaucoma has become a focus of attention. However, naked miRNA cannot cross the corneal barrier and reach the target tissue by itself. Thus, the precise transport of miRNA to the target sites is key to the success of gene therapy.

View Article and Find Full Text PDF

Photothermal therapy (PTT) combined with chemodynamic therapy (CDT) presents an appealing complementary anti-tumor strategy, wherein PTT accelerates the production of reactive oxygen species (ROS) in CDT and CDT eliminates residual tumor tissues that survive from PTT treatment. However, nanomaterials utilized in PTT/CDT are limited by non-specific damage to the entire organism. Herein, a glucose-responsive enzymatic Fe@HRP-ABTS/GOx nanodot is judiciously designed for tumor-specific PTT/CDT via a simple and clean protein-templated biomimetic mineralization synthesis.

View Article and Find Full Text PDF

As a novel protein knockdown tool, proteolysis targeting chimeras (PROTACs) can induce potent degradation of target proteins by hijacking E3 ubiquitin ligases. However, the uncontrollable protein disruption of PROTACs is prone to cause "off-target" toxicity after systemic administration. Herein, we designed a photocaged-PROTAC (phoBET1) and loaded it in UCNPs-based mesoporous silica nanoparticles (UMSNs) to construct a NIR light-activatable PROTAC nanocage (UMSNs@phoBET1) for controllable target protein degradation.

View Article and Find Full Text PDF

Bacterial biofilm-associated infection is a life-threatening emergency contributing from drug resistance and immune escape. Herein, a novel non-antibiotic strategy based on the synergy of bionanocatalysts-driven heat-amplified chemodynamic therapy (CDT) and innate immunomodulation is proposed for specific biofilm elimination by the smart design of a biofilm microenvironment (BME)-responsive double-layered metal-organic framework (MOF) bionanocatalysts (MACG) composed of MIL-100 and CuBTC. Once reaching the acidic BME, the acidity-triggered degradation of CuBTC allows the sequential release of glucose oxidase (GOx) and an activable photothermal agent, 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS).

View Article and Find Full Text PDF

Radiotherapy (RT), including external beam RT and internal radiation therapy, uses high-energy ionizing radiation to kill tumor cells. However, ionizing radiation inevitably damages the surrounding normal tissues. Therefore, it is imperative to develop precision RT for improving the treatment outcome and reducing the adverse effects.

View Article and Find Full Text PDF

End-effector type upper limb rehabilitation robots (ULRRs) are connected to patients at one distal point, making them have simple structures and less complex control algorithms, and they can avoid abnormal motion and posture of the target anatomical joints and specific muscles. Given that the end-effector type ULRR focuses more on the rehabilitation of the combined motion of upper limb chain, assisting the patient to perform collaborative tasks, and its intervention has some advantages than the exoskeleton type ULRR, we developed a novel three-degree-of-freedom (DOF) end-effector type ULRR. The advantage of the mechanical design is that the designed end-effector type ULRR can achieve three DOFs by using a four-bar mechanism and a lifting mechanism; we also developed the patient-specific exercises including patient-passive exercise and patient-cooperative exercise, and the advantage of the developed patient-cooperative exercise is that we simplified the human-robot coupling system model into a single spring system instead of the mass-spring-damp system, which efficiently improved the response speed of the control system.

View Article and Find Full Text PDF

Many chemotherapeutic drugs and photosensitizers suffer from poor solubility, unspecific delivery and uncontrollable release, which severely impede their biomedical applications. Herein, we designed a type of ROS-cleavable hydrophilic diselenide nanoparticles through self-assembling of PEG-modified camptothecin (CPT, a hydrophobic drug) and meso‑tetra (4-carboxyphenyl) porphine (TCPP, a hydrophobic photosensitizer). The TCPP@SeSe-CPT nanomedicine (particle size: 116.

View Article and Find Full Text PDF

Purpose: Radiation therapy (RT) and photodynamic therapy (PDT) are promising while challenging in treating tumors. The potential radiation resistance of tumor cells and side effects to healthy tissues restrict their clinical treatment efficacy. Effective delivery of therapeutic agents to the deep tumor tissues would be available for tumor-accurate therapy and promising for the tumor therapy.

View Article and Find Full Text PDF

There is an increasingly growing demand for nonantibiotic strategies to overcome drug resistance in bacterial biofilm infections. Here, a novel "gas-sensitized hyperthermia" strategy is proposed for appreciable bacteria killing by the smart design of a metal-organic framework (MOF)-sealed Prussian blue-based nanocarrier (MSDG). Once the biofilm microenvironment (BME) is reached, the acidity-activated MOF degradation allows the release of diallyl trisulfide and subsequent glutathione-responsive generation of hydrogen sulfide (HS) gas.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionthi6gkljgp5d4tivfb5g7o7n3312ph7s): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once