Publications by authors named "Wenpan Zhang"

Photodynamic therapy (PDT) stands as an efficacious modality for the treatment of cancer and various diseases, in which optimization of the electron transfer and augmentation of the production of lethal reactive oxygen species (ROS) represent pivotal challenges to enhance its therapeutic efficacy. Empirical investigations have established that the spontaneous initiation of redox reactions associated with electron transfer is feasible and is located in the gas-liquid interfaces. Meanwhile, nanobubbles (NBs) are emerging as entities capable of furnishing a plethora of such interfaces, attributed to their stability and large surface/volume ratio in bulk water.

View Article and Find Full Text PDF

Malignant pleural mesothelioma (MPM) is a malignant tumor originating from the pleura, and its incidence has been increasing in recent years. Due to the insidious onset and strong local invasiveness of MPM, most patients are diagnosed in the late stage and early screening and treatment for high-risk populations are crucial. The treatment of MPM mainly includes surgery, chemotherapy, and radiotherapy.

View Article and Find Full Text PDF

Small-cell lung cancer (SCLC) is an aggressive malignancy characterized by high cellular proliferation and early distant metastasis. Our study aimed to explore the effect of miR-22-3p (miR-22, for short) on SCLC radiosensitivity and its molecular mechanisms. The expression level of miR-22 was evaluated in a human normal lung epithelial cell line and a human SCLC cell line, and cell apoptosis and migration were detected.

View Article and Find Full Text PDF

Sugarcane (Saccharum hybrids spp.) is the most important sugar crop that accounts for ~75% of the world's sugar production. Recently, a whole-genome sequencing project was launched on the wild species S.

View Article and Find Full Text PDF

Background: SNPs are the most abundant polymorphism type, and have been explored in many crop genomic studies, including rice and maize. SNP discovery in allotetraploid cotton genomes has lagged behind that of other crops due to their complexity and polyploidy. In this study, genome-wide SNPs are detected systematically using next-generation sequencing and efficient SNP genotyping methods, and used to construct a linkage map and characterize the structural variations in polyploid cotton genomes.

View Article and Find Full Text PDF

Upland cotton is a model for polyploid crop domestication and transgenic improvement. Here we sequenced the allotetraploid Gossypium hirsutum L. acc.

View Article and Find Full Text PDF

Ploidy level is important in biodiversity studies and in developing strategies for isolating important plant genes. Many herbicide-resistant weed species are polyploids, but our understanding of these polyploid weeds is limited. Japanese foxtail, a noxious agricultural grass weed, has evolved herbicide resistance.

View Article and Find Full Text PDF

Centromere usually contains high-copy-number retrotransposons and satellite repeats, which are difficult to map, clone and sequence. Currently, very little is known about the centromere in cotton. Here, we sequenced a bacterial artificial chromosome (BAC) mapping to the centromeric region and predicted four long-terminal-repeat (LTR) retrotransposons.

View Article and Find Full Text PDF

Fluorescence in situ hybridization on extended DNA (fiber-FISH) is a powerful tool in high-resolution physical mapping. To introduce this technique into cotton, we developed the technique and tested it by deliberately mapping of telomere and 5S rDNA. Results showed that telomere-length ranged from 0.

View Article and Find Full Text PDF

In a previous study, we observed that the variations in chromosome size are due to uneven expansion and contraction by comparing the structures and sizes of a pair of homoeologous high-resolution cytogenetic maps of chromosomes 12A and 12D in tetraploid cotton. To reveal the variation at the sequence level, in the present paper, we sequenced two pairs of homoeologous bacterial artificial chromosomes derived from high- to low-variable genomic regions. Comparisons of their sequence variations confirmed that the highly conserved and divergent sequences existed in the distal and pericentric regions, e.

View Article and Find Full Text PDF

Cotton is a model system for studying polyploidization, genomic organization, and genome-size variation because the allotetraploid was formed 1-2 million years ago, which is old enough for sequence divergence but relatively recent to maintain genome stability. In spite of characterizing random genomic sequences in many polyploidy plants, the cytogenetic and sequence data that decipher homoeologous chromosomes are very limited in allopolyploid species. Here, we reported comprehensive analyses of integrated cytogenetic and linkage maps of homoeologous chromosomes 12A and 12D in allotetraploid cotton using fluorescence in situ hybridization and a large number of bacterial artificial chromosomes that were anchored by simple sequence repeat markers in the corresponding linkage maps.

View Article and Find Full Text PDF

Fluorescence in situ hybridization (FISH) based on pachytene chromosomes has become an important cytogenetic tool to construct high axial-resolution and sensitivity cytogenetic maps. However, the application of this technique in cotton has lagged behind due to difficulties in chromosome preparation. To date, successful FISH based on cotton pachytene chromosomes has not been reported.

View Article and Find Full Text PDF